使用基于倾向分数的估算器对不同调整集进行比较分析

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Statistics & Data Analysis Pub Date : 2024-10-21 DOI:10.1016/j.csda.2024.108079
Shanshan Luo , Jiaqi Min , Wei Li , Xueli Wang , Zhi Geng
{"title":"使用基于倾向分数的估算器对不同调整集进行比较分析","authors":"Shanshan Luo ,&nbsp;Jiaqi Min ,&nbsp;Wei Li ,&nbsp;Xueli Wang ,&nbsp;Zhi Geng","doi":"10.1016/j.csda.2024.108079","DOIUrl":null,"url":null,"abstract":"<div><div>Propensity score based estimators are commonly employed in observational studies to address baseline confounders, without explicitly modeling their association with the outcome. In this paper, to fully leverage these estimators, we consider a series of regression models for improving estimation efficiency. The proposed estimators rely solely on a properly modeled propensity score and do not require the correct specification of outcome models. In addition, we consider a comparative analysis by applying the proposed estimators to four different adjustment sets, each consisting of background covariates. The theoretical results imply that incorporating predictive covariates into both propensity score and regression model demonstrates the lowest asymptotic variance. However, including instrumental variables in the propensity score may decrease the estimation efficiency of the proposed estimators. To evaluate the performance of the proposed estimators, we conduct simulation studies and provide a real data example.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"203 ","pages":"Article 108079"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative analysis of different adjustment sets using propensity score based estimators\",\"authors\":\"Shanshan Luo ,&nbsp;Jiaqi Min ,&nbsp;Wei Li ,&nbsp;Xueli Wang ,&nbsp;Zhi Geng\",\"doi\":\"10.1016/j.csda.2024.108079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Propensity score based estimators are commonly employed in observational studies to address baseline confounders, without explicitly modeling their association with the outcome. In this paper, to fully leverage these estimators, we consider a series of regression models for improving estimation efficiency. The proposed estimators rely solely on a properly modeled propensity score and do not require the correct specification of outcome models. In addition, we consider a comparative analysis by applying the proposed estimators to four different adjustment sets, each consisting of background covariates. The theoretical results imply that incorporating predictive covariates into both propensity score and regression model demonstrates the lowest asymptotic variance. However, including instrumental variables in the propensity score may decrease the estimation efficiency of the proposed estimators. To evaluate the performance of the proposed estimators, we conduct simulation studies and provide a real data example.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"203 \",\"pages\":\"Article 108079\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001634\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001634","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在观察性研究中,通常会使用基于倾向得分的估计器来处理基线混杂因素,而不明确模拟它们与结果的关联。在本文中,为了充分利用这些估计方法,我们考虑了一系列提高估计效率的回归模型。所提出的估计方法仅依赖于正确建模的倾向得分,而不需要正确规范结果模型。此外,我们还考虑对四个不同的调整集(每个调整集由背景协变量组成)应用所提出的估计器进行比较分析。理论结果表明,将预测协变量纳入倾向评分和回归模型的渐近方差最小。然而,在倾向评分中加入工具变量可能会降低拟议估计器的估计效率。为了评估所提出的估计器的性能,我们进行了模拟研究,并提供了一个真实数据示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative analysis of different adjustment sets using propensity score based estimators
Propensity score based estimators are commonly employed in observational studies to address baseline confounders, without explicitly modeling their association with the outcome. In this paper, to fully leverage these estimators, we consider a series of regression models for improving estimation efficiency. The proposed estimators rely solely on a properly modeled propensity score and do not require the correct specification of outcome models. In addition, we consider a comparative analysis by applying the proposed estimators to four different adjustment sets, each consisting of background covariates. The theoretical results imply that incorporating predictive covariates into both propensity score and regression model demonstrates the lowest asymptotic variance. However, including instrumental variables in the propensity score may decrease the estimation efficiency of the proposed estimators. To evaluate the performance of the proposed estimators, we conduct simulation studies and provide a real data example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
期刊最新文献
Editorial Board Stratified distance space improves the efficiency of sequential samplers for approximate Bayesian computation Confidence intervals for tree-structured varying coefficients Efficient computation of sparse and robust maximum association estimators Functional time transformation model with applications to digital health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1