{"title":"利用人工神经网络和响应面方法分析翅片管式热交换器的管子排列,优化整体效率","authors":"","doi":"10.1016/j.csite.2024.105302","DOIUrl":null,"url":null,"abstract":"<div><div>Temperature is a critical factor in numerous equipment, industries, and daily life applications. Heat exchangers are essential devices that help regulate and optimize this factor. The finned-tube heat exchanger (FTHE) is widely favored due to its high efficiency in facilitating heat transfer between liquids and gases. Improving the performance of FTHE can significantly provide thermal requirements in industrial and engineering processes and reduce energy consumption. The present research includes a numerical study of an FTHE and the optimization of the performances based on the input variables by response surface methodology (RSM) and artificial neural network (ANN) methods. The tubes' transverse and longitudinal pitches and inlet Reynolds number were selected as input variables. Also, the examined responses were the Colburn and friction factors. Changing tubes' pitches makes it possible to significantly affect the thermo-hydraulic performance without incurring additional costs and processes. The acquired results showed that the responses predicted by the models are very close to the numerical results, which indicates the high accuracy and validity of these models. According to the results, the optimum heat exchanger's efficiency index was obtained at <em>P</em><sub><em>t</em></sub> = 26.128 mm, <em>P</em><sub><em>l</em></sub> = 28 mm, and <em>Re</em> = 800. It was also observed that the overall performance of the optimal design is 185 % higher than the weakest FTHE.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing tube arrangements of a finned-tube heat exchanger to optimize overall efficiency using artificial neural network and response surface methodology\",\"authors\":\"\",\"doi\":\"10.1016/j.csite.2024.105302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Temperature is a critical factor in numerous equipment, industries, and daily life applications. Heat exchangers are essential devices that help regulate and optimize this factor. The finned-tube heat exchanger (FTHE) is widely favored due to its high efficiency in facilitating heat transfer between liquids and gases. Improving the performance of FTHE can significantly provide thermal requirements in industrial and engineering processes and reduce energy consumption. The present research includes a numerical study of an FTHE and the optimization of the performances based on the input variables by response surface methodology (RSM) and artificial neural network (ANN) methods. The tubes' transverse and longitudinal pitches and inlet Reynolds number were selected as input variables. Also, the examined responses were the Colburn and friction factors. Changing tubes' pitches makes it possible to significantly affect the thermo-hydraulic performance without incurring additional costs and processes. The acquired results showed that the responses predicted by the models are very close to the numerical results, which indicates the high accuracy and validity of these models. According to the results, the optimum heat exchanger's efficiency index was obtained at <em>P</em><sub><em>t</em></sub> = 26.128 mm, <em>P</em><sub><em>l</em></sub> = 28 mm, and <em>Re</em> = 800. It was also observed that the overall performance of the optimal design is 185 % higher than the weakest FTHE.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X24013339\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24013339","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Analyzing tube arrangements of a finned-tube heat exchanger to optimize overall efficiency using artificial neural network and response surface methodology
Temperature is a critical factor in numerous equipment, industries, and daily life applications. Heat exchangers are essential devices that help regulate and optimize this factor. The finned-tube heat exchanger (FTHE) is widely favored due to its high efficiency in facilitating heat transfer between liquids and gases. Improving the performance of FTHE can significantly provide thermal requirements in industrial and engineering processes and reduce energy consumption. The present research includes a numerical study of an FTHE and the optimization of the performances based on the input variables by response surface methodology (RSM) and artificial neural network (ANN) methods. The tubes' transverse and longitudinal pitches and inlet Reynolds number were selected as input variables. Also, the examined responses were the Colburn and friction factors. Changing tubes' pitches makes it possible to significantly affect the thermo-hydraulic performance without incurring additional costs and processes. The acquired results showed that the responses predicted by the models are very close to the numerical results, which indicates the high accuracy and validity of these models. According to the results, the optimum heat exchanger's efficiency index was obtained at Pt = 26.128 mm, Pl = 28 mm, and Re = 800. It was also observed that the overall performance of the optimal design is 185 % higher than the weakest FTHE.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.