{"title":"优化绳状金字塔太阳能蒸馏器:方形挡板、反射器和相变材料综合研究","authors":"","doi":"10.1016/j.csite.2024.105304","DOIUrl":null,"url":null,"abstract":"<div><div>Limited access to safe drinking water is a critical global issue, particularly in areas with inadequate infrastructure. Solar stills offer a promising alternative for such regions. This study investigates the influence of square baffles within a modified solar still design on its overall efficiency. Additionally, the integration of reflectors is explored to enhance both evaporation and condensation rates. Furthermore, the effectiveness of a paraffin wax phase change material (PCM) combined with silver nanoparticles is assessed within the modified still. Thermo-economic analyses are conducted to evaluate the economic feasibility of the proposed system. The findings demonstrate a significant improvement in distillation yield. The modified still with square baffles achieved a yield of 9800 mL/m<sup>2</sup>.day compared to 3550 mL/m<sup>2</sup>.day for the reference still, representing a 193 % increase. Moreover, incorporating the nano-PCM at an optimal configuration (25 cords) resulted in a further 265 % productivity increase for the modified still with both square baffles and reflectors. This configuration also achieved an efficiency of 63 %. Economic analysis revealed a minimal cost difference between the reference still (0.014 $/L) and the modified still with square baffles and nano-PCM (0.01 $/L). In terms of environmental impact, the modified still exhibited a lower annual CO<sub>2</sub> emission of 28.8 tons.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing cord pyramid solar distillers: A comprehensive study on square baffles, reflectors, and phase transition materials\",\"authors\":\"\",\"doi\":\"10.1016/j.csite.2024.105304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Limited access to safe drinking water is a critical global issue, particularly in areas with inadequate infrastructure. Solar stills offer a promising alternative for such regions. This study investigates the influence of square baffles within a modified solar still design on its overall efficiency. Additionally, the integration of reflectors is explored to enhance both evaporation and condensation rates. Furthermore, the effectiveness of a paraffin wax phase change material (PCM) combined with silver nanoparticles is assessed within the modified still. Thermo-economic analyses are conducted to evaluate the economic feasibility of the proposed system. The findings demonstrate a significant improvement in distillation yield. The modified still with square baffles achieved a yield of 9800 mL/m<sup>2</sup>.day compared to 3550 mL/m<sup>2</sup>.day for the reference still, representing a 193 % increase. Moreover, incorporating the nano-PCM at an optimal configuration (25 cords) resulted in a further 265 % productivity increase for the modified still with both square baffles and reflectors. This configuration also achieved an efficiency of 63 %. Economic analysis revealed a minimal cost difference between the reference still (0.014 $/L) and the modified still with square baffles and nano-PCM (0.01 $/L). In terms of environmental impact, the modified still exhibited a lower annual CO<sub>2</sub> emission of 28.8 tons.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X24013352\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24013352","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Optimizing cord pyramid solar distillers: A comprehensive study on square baffles, reflectors, and phase transition materials
Limited access to safe drinking water is a critical global issue, particularly in areas with inadequate infrastructure. Solar stills offer a promising alternative for such regions. This study investigates the influence of square baffles within a modified solar still design on its overall efficiency. Additionally, the integration of reflectors is explored to enhance both evaporation and condensation rates. Furthermore, the effectiveness of a paraffin wax phase change material (PCM) combined with silver nanoparticles is assessed within the modified still. Thermo-economic analyses are conducted to evaluate the economic feasibility of the proposed system. The findings demonstrate a significant improvement in distillation yield. The modified still with square baffles achieved a yield of 9800 mL/m2.day compared to 3550 mL/m2.day for the reference still, representing a 193 % increase. Moreover, incorporating the nano-PCM at an optimal configuration (25 cords) resulted in a further 265 % productivity increase for the modified still with both square baffles and reflectors. This configuration also achieved an efficiency of 63 %. Economic analysis revealed a minimal cost difference between the reference still (0.014 $/L) and the modified still with square baffles and nano-PCM (0.01 $/L). In terms of environmental impact, the modified still exhibited a lower annual CO2 emission of 28.8 tons.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.