Zhila Osmani , Lipu Wang , Wei Xiao , Marianna Kulka
{"title":"作为植物转化工具的纳米材料:以原生质体为中心的视角","authors":"Zhila Osmani , Lipu Wang , Wei Xiao , Marianna Kulka","doi":"10.1016/j.plana.2024.100100","DOIUrl":null,"url":null,"abstract":"<div><div>Genetic engineering of plants can boost disease resistance, enhance crop traits, and ultimately improve agricultural productivity. Several approaches to plant bioengineering have been successful in recent decades. Nanomaterials (NMs) can be customized and fabricated with targeting capabilities, making them well-suited for bioengineering applications. These NMs include organic, inorganic, and composite materials with many different structures, including nanofibers, nanoparticles (NPs), and nanomembranes. Protoplasts are often used as target cells because they lack a cell wall and are more likely to endocytose NM. In this review, the efficacy of NMs in delivering genetic material to protoplasts is examined. The challenges associated with protoplast generation and optimization of protocols for transformation are explored and the possible advantages of NMs in this process are identified. The chemical properties of these NMs in relation to their potency is briefly discussed. Ultimately, this technology is evolving and our understanding of NMs and the requirement for migration through the cellular membrane is still missing several key pieces of information. The next decades will likely produce important new insights that will have important impacts in this field.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"10 ","pages":"Article 100100"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanomaterials as tools in plant transformation: A protoplast-centric perspective\",\"authors\":\"Zhila Osmani , Lipu Wang , Wei Xiao , Marianna Kulka\",\"doi\":\"10.1016/j.plana.2024.100100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Genetic engineering of plants can boost disease resistance, enhance crop traits, and ultimately improve agricultural productivity. Several approaches to plant bioengineering have been successful in recent decades. Nanomaterials (NMs) can be customized and fabricated with targeting capabilities, making them well-suited for bioengineering applications. These NMs include organic, inorganic, and composite materials with many different structures, including nanofibers, nanoparticles (NPs), and nanomembranes. Protoplasts are often used as target cells because they lack a cell wall and are more likely to endocytose NM. In this review, the efficacy of NMs in delivering genetic material to protoplasts is examined. The challenges associated with protoplast generation and optimization of protocols for transformation are explored and the possible advantages of NMs in this process are identified. The chemical properties of these NMs in relation to their potency is briefly discussed. Ultimately, this technology is evolving and our understanding of NMs and the requirement for migration through the cellular membrane is still missing several key pieces of information. The next decades will likely produce important new insights that will have important impacts in this field.</div></div>\",\"PeriodicalId\":101029,\"journal\":{\"name\":\"Plant Nano Biology\",\"volume\":\"10 \",\"pages\":\"Article 100100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Nano Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773111124000433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111124000433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanomaterials as tools in plant transformation: A protoplast-centric perspective
Genetic engineering of plants can boost disease resistance, enhance crop traits, and ultimately improve agricultural productivity. Several approaches to plant bioengineering have been successful in recent decades. Nanomaterials (NMs) can be customized and fabricated with targeting capabilities, making them well-suited for bioengineering applications. These NMs include organic, inorganic, and composite materials with many different structures, including nanofibers, nanoparticles (NPs), and nanomembranes. Protoplasts are often used as target cells because they lack a cell wall and are more likely to endocytose NM. In this review, the efficacy of NMs in delivering genetic material to protoplasts is examined. The challenges associated with protoplast generation and optimization of protocols for transformation are explored and the possible advantages of NMs in this process are identified. The chemical properties of these NMs in relation to their potency is briefly discussed. Ultimately, this technology is evolving and our understanding of NMs and the requirement for migration through the cellular membrane is still missing several key pieces of information. The next decades will likely produce important new insights that will have important impacts in this field.