{"title":"基于隐马尔可夫模型的多特征系统复原力评估","authors":"Jiaying Liu , Jun Zhang , Qingfeng Tian , Bei Wu","doi":"10.1016/j.ress.2024.110561","DOIUrl":null,"url":null,"abstract":"<div><div>Modern systems have become increasingly vulnerable to threats due to their growing complexity nowadays. Multi-feature systems, prevalent in the realm of complex structures, manifest their performance through a diverse array of features. In response to threats, this paper develops a resilience evaluation model for multi-feature systems based on hidden Markov models, which can describe the dynamic relationship between performance levels and external features. Quantitative resilience indicators are presented across three distinct dimensions: resistant, absorption, and recovery, whose analytical formulas are derived by generating functions and properties are proved. Meanwhile, simulation algorithms are proposed to verify the correctness of the analytic formulas. Finally, taking the system under the threat of flood disasters as an example, the resilience model proposed in this paper is applied to evaluate its resilience, and the robustness of the resilience evaluation indicators is verified.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilience evaluation of multi-feature system based on hidden Markov model\",\"authors\":\"Jiaying Liu , Jun Zhang , Qingfeng Tian , Bei Wu\",\"doi\":\"10.1016/j.ress.2024.110561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modern systems have become increasingly vulnerable to threats due to their growing complexity nowadays. Multi-feature systems, prevalent in the realm of complex structures, manifest their performance through a diverse array of features. In response to threats, this paper develops a resilience evaluation model for multi-feature systems based on hidden Markov models, which can describe the dynamic relationship between performance levels and external features. Quantitative resilience indicators are presented across three distinct dimensions: resistant, absorption, and recovery, whose analytical formulas are derived by generating functions and properties are proved. Meanwhile, simulation algorithms are proposed to verify the correctness of the analytic formulas. Finally, taking the system under the threat of flood disasters as an example, the resilience model proposed in this paper is applied to evaluate its resilience, and the robustness of the resilience evaluation indicators is verified.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024006331\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006331","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Resilience evaluation of multi-feature system based on hidden Markov model
Modern systems have become increasingly vulnerable to threats due to their growing complexity nowadays. Multi-feature systems, prevalent in the realm of complex structures, manifest their performance through a diverse array of features. In response to threats, this paper develops a resilience evaluation model for multi-feature systems based on hidden Markov models, which can describe the dynamic relationship between performance levels and external features. Quantitative resilience indicators are presented across three distinct dimensions: resistant, absorption, and recovery, whose analytical formulas are derived by generating functions and properties are proved. Meanwhile, simulation algorithms are proposed to verify the correctness of the analytic formulas. Finally, taking the system under the threat of flood disasters as an example, the resilience model proposed in this paper is applied to evaluate its resilience, and the robustness of the resilience evaluation indicators is verified.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.