{"title":"从光谱模板中学习二方图","authors":"Subbareddy Batreddy , Aditya Siripuram , Jingxin Zhang","doi":"10.1016/j.sigpro.2024.109732","DOIUrl":null,"url":null,"abstract":"<div><div>Graph learning is crucial for understanding the relationship between data components. Signal processing-based graph learning algorithms are designed for specific signal models. This work investigates the problem of learning bipartite graphs given arbitrarily ordered spectral templates or graph eigenvectors. Starting from the spectral templates, the proposed algorithm identifies the vertex groups of the bipartite graph. Experiments conducted on three different types of synthetic datasets demonstrate that the proposed bipartite graph learning algorithms outperform structure-blind learning techniques across various signal-to-noise (SNR) regimes. Our algorithm leverages the spectral signatures of a bipartite graph, specifically the structure of the graph’s eigenvectors.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109732"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning bipartite graphs from spectral templates\",\"authors\":\"Subbareddy Batreddy , Aditya Siripuram , Jingxin Zhang\",\"doi\":\"10.1016/j.sigpro.2024.109732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graph learning is crucial for understanding the relationship between data components. Signal processing-based graph learning algorithms are designed for specific signal models. This work investigates the problem of learning bipartite graphs given arbitrarily ordered spectral templates or graph eigenvectors. Starting from the spectral templates, the proposed algorithm identifies the vertex groups of the bipartite graph. Experiments conducted on three different types of synthetic datasets demonstrate that the proposed bipartite graph learning algorithms outperform structure-blind learning techniques across various signal-to-noise (SNR) regimes. Our algorithm leverages the spectral signatures of a bipartite graph, specifically the structure of the graph’s eigenvectors.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"227 \",\"pages\":\"Article 109732\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424003529\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003529","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Graph learning is crucial for understanding the relationship between data components. Signal processing-based graph learning algorithms are designed for specific signal models. This work investigates the problem of learning bipartite graphs given arbitrarily ordered spectral templates or graph eigenvectors. Starting from the spectral templates, the proposed algorithm identifies the vertex groups of the bipartite graph. Experiments conducted on three different types of synthetic datasets demonstrate that the proposed bipartite graph learning algorithms outperform structure-blind learning techniques across various signal-to-noise (SNR) regimes. Our algorithm leverages the spectral signatures of a bipartite graph, specifically the structure of the graph’s eigenvectors.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.