{"title":"同时处理过程和测量建模误差的交互式多模型自适应鲁棒卡尔曼滤波器","authors":"Baojian Yang, Huaiguang Wang, Zhiyong Shi","doi":"10.1016/j.sigpro.2024.109743","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes an effective Interactive Multiple Model Adaptive Robust Kalman Filter (IMMARKF) without time delay to handle situations where both process modeling errors and measurement modeling errors exist simultaneously. Building upon the robust Centered Error Entropy Kalman Filter (CEEKF) for outlier measurements and the Adaptive Kalman Filter (AKF) for process modeling errors, the IMMARKF method combines the Gaussian optimality of the KF, the adaptability of AKF, and the robustness of CEEKF using the interacting multiple model (IMM) principle to adapt reasonably to changing application environments, and can obtain estimation results in the absence of time delay. Target tracking simulations show that compared to existing methods, the proposed method can better adapt to non-stationary noise and application environments where process anomalies and measurement anomalies occur simultaneously.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109743"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interacting multiple model adaptive robust Kalman filter for process and measurement modeling errors simultaneously\",\"authors\":\"Baojian Yang, Huaiguang Wang, Zhiyong Shi\",\"doi\":\"10.1016/j.sigpro.2024.109743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes an effective Interactive Multiple Model Adaptive Robust Kalman Filter (IMMARKF) without time delay to handle situations where both process modeling errors and measurement modeling errors exist simultaneously. Building upon the robust Centered Error Entropy Kalman Filter (CEEKF) for outlier measurements and the Adaptive Kalman Filter (AKF) for process modeling errors, the IMMARKF method combines the Gaussian optimality of the KF, the adaptability of AKF, and the robustness of CEEKF using the interacting multiple model (IMM) principle to adapt reasonably to changing application environments, and can obtain estimation results in the absence of time delay. Target tracking simulations show that compared to existing methods, the proposed method can better adapt to non-stationary noise and application environments where process anomalies and measurement anomalies occur simultaneously.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"227 \",\"pages\":\"Article 109743\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424003633\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003633","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Interacting multiple model adaptive robust Kalman filter for process and measurement modeling errors simultaneously
This paper proposes an effective Interactive Multiple Model Adaptive Robust Kalman Filter (IMMARKF) without time delay to handle situations where both process modeling errors and measurement modeling errors exist simultaneously. Building upon the robust Centered Error Entropy Kalman Filter (CEEKF) for outlier measurements and the Adaptive Kalman Filter (AKF) for process modeling errors, the IMMARKF method combines the Gaussian optimality of the KF, the adaptability of AKF, and the robustness of CEEKF using the interacting multiple model (IMM) principle to adapt reasonably to changing application environments, and can obtain estimation results in the absence of time delay. Target tracking simulations show that compared to existing methods, the proposed method can better adapt to non-stationary noise and application environments where process anomalies and measurement anomalies occur simultaneously.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.