使用二进制传感器识别人类活动:系统综述

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2024-10-11 DOI:10.1016/j.inffus.2024.102731
Muhammad Toaha Raza Khan, Enver Ever, Sukru Eraslan, Yeliz Yesilada
{"title":"使用二进制传感器识别人类活动:系统综述","authors":"Muhammad Toaha Raza Khan,&nbsp;Enver Ever,&nbsp;Sukru Eraslan,&nbsp;Yeliz Yesilada","doi":"10.1016/j.inffus.2024.102731","DOIUrl":null,"url":null,"abstract":"<div><div>Human activity recognition (HAR) is an emerging area of study and research field that explores the development of automated systems to identify and categorize human activities using data collected from various sensors. In the field of Human Activity Recognition (HAR), binary sensors offer a distinct approach by providing simpler on/off readings to indicate the presence of events such as door openings or light switch activations. Compared to other sensors used for HAR, binary sensors have several advantages, including lower cost, low power consumption, ease of installation, and privacy preservation. For instance, they can be effectively used in smart homes to detect when someone enters or leaves a room without user input. This study presents a systematic review of the state-of-the-art methods and techniques for HAR using binary sensors. We comprehensively consider five crucial aspects: data collection methods, preprocessing techniques, feature extraction and fusion strategies, classification algorithms, and evaluation metrics. Furthermore, we identify the gaps and limitations of the existing studies and provide directions for future research. This comprehensive and up-to-date review can serve as a valuable reference for researchers and practitioners in the field of HAR using binary sensors.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"115 ","pages":"Article 102731"},"PeriodicalIF":14.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human activity recognition using binary sensors: A systematic review\",\"authors\":\"Muhammad Toaha Raza Khan,&nbsp;Enver Ever,&nbsp;Sukru Eraslan,&nbsp;Yeliz Yesilada\",\"doi\":\"10.1016/j.inffus.2024.102731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Human activity recognition (HAR) is an emerging area of study and research field that explores the development of automated systems to identify and categorize human activities using data collected from various sensors. In the field of Human Activity Recognition (HAR), binary sensors offer a distinct approach by providing simpler on/off readings to indicate the presence of events such as door openings or light switch activations. Compared to other sensors used for HAR, binary sensors have several advantages, including lower cost, low power consumption, ease of installation, and privacy preservation. For instance, they can be effectively used in smart homes to detect when someone enters or leaves a room without user input. This study presents a systematic review of the state-of-the-art methods and techniques for HAR using binary sensors. We comprehensively consider five crucial aspects: data collection methods, preprocessing techniques, feature extraction and fusion strategies, classification algorithms, and evaluation metrics. Furthermore, we identify the gaps and limitations of the existing studies and provide directions for future research. This comprehensive and up-to-date review can serve as a valuable reference for researchers and practitioners in the field of HAR using binary sensors.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"115 \",\"pages\":\"Article 102731\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253524005098\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524005098","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

人类活动识别(HAR)是一个新兴的学习和研究领域,它探索开发自动系统,利用从各种传感器收集的数据识别人类活动并对其进行分类。在人类活动识别(HAR)领域,二进制传感器提供了一种与众不同的方法,它通过提供更简单的开/关读数来指示事件的存在,如门的打开或电灯开关的启动。与其他用于人体活动识别的传感器相比,二进制传感器具有成本低、功耗低、易于安装和保护隐私等优点。例如,二进制传感器可以有效地用于智能家居,在没有用户输入的情况下检测某人何时进入或离开房间。本研究系统回顾了使用二进制传感器进行 HAR 的最新方法和技术。我们全面考虑了五个关键方面:数据收集方法、预处理技术、特征提取和融合策略、分类算法和评估指标。此外,我们还指出了现有研究的不足和局限,并为未来研究指明了方向。这篇全面、最新的综述可为使用二进制传感器的 HAR 领域的研究人员和从业人员提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human activity recognition using binary sensors: A systematic review
Human activity recognition (HAR) is an emerging area of study and research field that explores the development of automated systems to identify and categorize human activities using data collected from various sensors. In the field of Human Activity Recognition (HAR), binary sensors offer a distinct approach by providing simpler on/off readings to indicate the presence of events such as door openings or light switch activations. Compared to other sensors used for HAR, binary sensors have several advantages, including lower cost, low power consumption, ease of installation, and privacy preservation. For instance, they can be effectively used in smart homes to detect when someone enters or leaves a room without user input. This study presents a systematic review of the state-of-the-art methods and techniques for HAR using binary sensors. We comprehensively consider five crucial aspects: data collection methods, preprocessing techniques, feature extraction and fusion strategies, classification algorithms, and evaluation metrics. Furthermore, we identify the gaps and limitations of the existing studies and provide directions for future research. This comprehensive and up-to-date review can serve as a valuable reference for researchers and practitioners in the field of HAR using binary sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
Pretraining graph transformer for molecular representation with fusion of multimodal information Pan-Mamba: Effective pan-sharpening with state space model An autoencoder-based confederated clustering leveraging a robust model fusion strategy for federated unsupervised learning FairDPFL-SCS: Fair Dynamic Personalized Federated Learning with strategic client selection for improved accuracy and fairness M-IPISincNet: An explainable multi-source physics-informed neural network based on improved SincNet for rolling bearings fault diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1