手眼双通道人机交互系统的点击增强策略研究:感应区域与区域光标之间的权衡

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2024-10-01 DOI:10.1016/j.aei.2024.102880
Ya-Feng Niu, Rui Chen, Yi-Yan Wang, Xue-Ying Yao, Yun Feng
{"title":"手眼双通道人机交互系统的点击增强策略研究:感应区域与区域光标之间的权衡","authors":"Ya-Feng Niu,&nbsp;Rui Chen,&nbsp;Yi-Yan Wang,&nbsp;Xue-Ying Yao,&nbsp;Yun Feng","doi":"10.1016/j.aei.2024.102880","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to explore the application of click enhancement strategies in a “Sight Line Localization + Hand Triggered” eye-control human–computer interaction system, proposes a click enhancement strategy to solve two critical problems in eye-control human–computer interaction: Midas touch and low spatial accuracy. By conducting ergonomics experiments, we verify that the proposed click enhancement strategy can effectively improve the operational performance of hand-eye dual-channel HCI systems. The experimental results show that the accuracy of the operation can be significantly improved by using a cursor size equal to the diameter of the interaction control and a sensing area size of 1.8 times the diameter of the control. Based on the comprehensive consideration of operation efficiency and comfort, 0.75 times the control diameter of the cursor and 1.8 times the control diameter of the sensing area are the optimal parameter configurations. The results not only solve the problems of Midas touch and low spatial accuracy but also significantly reduce visual fatigue, thus improving the ease of use and robustness of the hand-eye dual-channel human–computer interaction system.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102880"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on click enhancement strategy of hand-eye dual-channel human-computer interaction system: Trade-off between sensing area and area cursor\",\"authors\":\"Ya-Feng Niu,&nbsp;Rui Chen,&nbsp;Yi-Yan Wang,&nbsp;Xue-Ying Yao,&nbsp;Yun Feng\",\"doi\":\"10.1016/j.aei.2024.102880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to explore the application of click enhancement strategies in a “Sight Line Localization + Hand Triggered” eye-control human–computer interaction system, proposes a click enhancement strategy to solve two critical problems in eye-control human–computer interaction: Midas touch and low spatial accuracy. By conducting ergonomics experiments, we verify that the proposed click enhancement strategy can effectively improve the operational performance of hand-eye dual-channel HCI systems. The experimental results show that the accuracy of the operation can be significantly improved by using a cursor size equal to the diameter of the interaction control and a sensing area size of 1.8 times the diameter of the control. Based on the comprehensive consideration of operation efficiency and comfort, 0.75 times the control diameter of the cursor and 1.8 times the control diameter of the sensing area are the optimal parameter configurations. The results not only solve the problems of Midas touch and low spatial accuracy but also significantly reduce visual fatigue, thus improving the ease of use and robustness of the hand-eye dual-channel human–computer interaction system.</div></div>\",\"PeriodicalId\":50941,\"journal\":{\"name\":\"Advanced Engineering Informatics\",\"volume\":\"62 \",\"pages\":\"Article 102880\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474034624005287\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624005287","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探索点击增强策略在 "视线定位+手触发 "眼控人机交互系统中的应用,提出了一种点击增强策略,以解决眼控人机交互中的两个关键问题:Midas touch 和低空间精度。通过人机工程学实验,我们验证了所提出的点击增强策略能有效改善手眼双通道人机交互系统的操作性能。实验结果表明,光标大小等于交互控制器直径,感应区域大小为控制器直径的 1.8 倍,可以显著提高操作精度。在综合考虑操作效率和舒适度的基础上,光标控制直径的 0.75 倍和传感区域控制直径的 1.8 倍是最佳参数配置。该结果不仅解决了 Midas 触摸和空间精度低的问题,还显著降低了视觉疲劳,从而提高了手眼双通道人机交互系统的易用性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on click enhancement strategy of hand-eye dual-channel human-computer interaction system: Trade-off between sensing area and area cursor
This study aims to explore the application of click enhancement strategies in a “Sight Line Localization + Hand Triggered” eye-control human–computer interaction system, proposes a click enhancement strategy to solve two critical problems in eye-control human–computer interaction: Midas touch and low spatial accuracy. By conducting ergonomics experiments, we verify that the proposed click enhancement strategy can effectively improve the operational performance of hand-eye dual-channel HCI systems. The experimental results show that the accuracy of the operation can be significantly improved by using a cursor size equal to the diameter of the interaction control and a sensing area size of 1.8 times the diameter of the control. Based on the comprehensive consideration of operation efficiency and comfort, 0.75 times the control diameter of the cursor and 1.8 times the control diameter of the sensing area are the optimal parameter configurations. The results not only solve the problems of Midas touch and low spatial accuracy but also significantly reduce visual fatigue, thus improving the ease of use and robustness of the hand-eye dual-channel human–computer interaction system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
A method for constructing an ergonomics evaluation indicator system for community aging services based on Kano-Delphi-CFA: A case study in China A temperature-sensitive points selection method for machine tool based on rough set and multi-objective adaptive hybrid evolutionary algorithm Enhancing EEG artifact removal through neural architecture search with large kernels Optimal design of an integrated inspection scheme with two adjustable sampling mechanisms for lot disposition A novel product shape design method integrating Kansei engineering and whale optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1