{"title":"Text2shape:基于改进的条件瓦瑟斯坦生成式对抗网络的汽车外轮廓形状智能计算设计","authors":"Tianshuo Zang, Maolin Yang, Yuhao Liu, Pingyu Jiang","doi":"10.1016/j.aei.2024.102892","DOIUrl":null,"url":null,"abstract":"<div><div>To provide technical support for the initial design of products, we propose an innovative text2shape-based technology for intelligent computational design, which can map engineering semantics to functional/structural/Kansei feature spaces to generate product shapes. New energy vehicles were selected as the application object of this technology, as there are many creative ideas for the outer contour design of new energy vehicles. Firstly, a dataset with 2900 + samples was built based on feature engineering (FE) and Kansei engineering (KE). Each sample contains the car’s outer contour shape’s functional, structural, and Kansei features. Secondly, we proposed an improved conditional Wasserstein generative adversarial network (CWGAN) model suitable to the dataset. The generator’s loss in the model is designed to evaluate the authenticity of the generated results, while the discriminator’s loss assesses the conditional matching of these results. Finally, in case studies, the trained CWGAN was compared with the conditional variational auto-encoder (C-VAE), diffusion, Wasserstein generative adversarial network with gradient penalty (WGAN-GP) and style generative adversarial network (StyleGAN) models, demonstrating superior performance.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102892"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Text2shape: Intelligent computational design of car outer contour shapes based on improved conditional Wasserstein generative adversarial network\",\"authors\":\"Tianshuo Zang, Maolin Yang, Yuhao Liu, Pingyu Jiang\",\"doi\":\"10.1016/j.aei.2024.102892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To provide technical support for the initial design of products, we propose an innovative text2shape-based technology for intelligent computational design, which can map engineering semantics to functional/structural/Kansei feature spaces to generate product shapes. New energy vehicles were selected as the application object of this technology, as there are many creative ideas for the outer contour design of new energy vehicles. Firstly, a dataset with 2900 + samples was built based on feature engineering (FE) and Kansei engineering (KE). Each sample contains the car’s outer contour shape’s functional, structural, and Kansei features. Secondly, we proposed an improved conditional Wasserstein generative adversarial network (CWGAN) model suitable to the dataset. The generator’s loss in the model is designed to evaluate the authenticity of the generated results, while the discriminator’s loss assesses the conditional matching of these results. Finally, in case studies, the trained CWGAN was compared with the conditional variational auto-encoder (C-VAE), diffusion, Wasserstein generative adversarial network with gradient penalty (WGAN-GP) and style generative adversarial network (StyleGAN) models, demonstrating superior performance.</div></div>\",\"PeriodicalId\":50941,\"journal\":{\"name\":\"Advanced Engineering Informatics\",\"volume\":\"62 \",\"pages\":\"Article 102892\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474034624005433\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624005433","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Text2shape: Intelligent computational design of car outer contour shapes based on improved conditional Wasserstein generative adversarial network
To provide technical support for the initial design of products, we propose an innovative text2shape-based technology for intelligent computational design, which can map engineering semantics to functional/structural/Kansei feature spaces to generate product shapes. New energy vehicles were selected as the application object of this technology, as there are many creative ideas for the outer contour design of new energy vehicles. Firstly, a dataset with 2900 + samples was built based on feature engineering (FE) and Kansei engineering (KE). Each sample contains the car’s outer contour shape’s functional, structural, and Kansei features. Secondly, we proposed an improved conditional Wasserstein generative adversarial network (CWGAN) model suitable to the dataset. The generator’s loss in the model is designed to evaluate the authenticity of the generated results, while the discriminator’s loss assesses the conditional matching of these results. Finally, in case studies, the trained CWGAN was compared with the conditional variational auto-encoder (C-VAE), diffusion, Wasserstein generative adversarial network with gradient penalty (WGAN-GP) and style generative adversarial network (StyleGAN) models, demonstrating superior performance.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.