Zeqiang Zhang , Wei Liang , Dan Ji , Yanqing Zeng , Yu Zhang , Yan Li , Lixia Zhu
{"title":"再制造系统中人机响应协同拆卸的混合整数编程和多目标增强差分进化算法","authors":"Zeqiang Zhang , Wei Liang , Dan Ji , Yanqing Zeng , Yu Zhang , Yan Li , Lixia Zhu","doi":"10.1016/j.aei.2024.102895","DOIUrl":null,"url":null,"abstract":"<div><div>The recycling of waste products is essential for resource reuse. However, turning operation direction causes significant fatigue to operators handling end-of-life (EoL) products, consequently degrading the recycling efficiency. Accordingly, this study employs responsive collaboration robots to aid operators in turning the operation direction of disassembled products. To solve the human-robot responsive collaboration disassembly line balancing problem (HRRC-DLBP), a mixed integer programming (MIP) model is constructed, and a decoding mechanism is designed in this study. Additionally, a multi-objective enhanced differential evolution algorithm (MEDE) in which the decoding mechanism is incorporated is devised and applied to solve the HRRC-DLBP. The MEDE algorithm is validated by comparing its solution results with those of the MIP model. Finally, the MEDE is used to optimise the EoL printer case for the HRRC-DLBP and the disassembly line balancing problem in which the operation direction is turned by humans (H-DLBP). The optimisation results show that the recycling of EoL products is more efficient using the HRRC-DLBP than employing the H-DLBP.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102895"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed integer programming and multi-objective enhanced differential evolution algorithm for human–robot responsive collaborative disassembly in remanufacturing system\",\"authors\":\"Zeqiang Zhang , Wei Liang , Dan Ji , Yanqing Zeng , Yu Zhang , Yan Li , Lixia Zhu\",\"doi\":\"10.1016/j.aei.2024.102895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The recycling of waste products is essential for resource reuse. However, turning operation direction causes significant fatigue to operators handling end-of-life (EoL) products, consequently degrading the recycling efficiency. Accordingly, this study employs responsive collaboration robots to aid operators in turning the operation direction of disassembled products. To solve the human-robot responsive collaboration disassembly line balancing problem (HRRC-DLBP), a mixed integer programming (MIP) model is constructed, and a decoding mechanism is designed in this study. Additionally, a multi-objective enhanced differential evolution algorithm (MEDE) in which the decoding mechanism is incorporated is devised and applied to solve the HRRC-DLBP. The MEDE algorithm is validated by comparing its solution results with those of the MIP model. Finally, the MEDE is used to optimise the EoL printer case for the HRRC-DLBP and the disassembly line balancing problem in which the operation direction is turned by humans (H-DLBP). The optimisation results show that the recycling of EoL products is more efficient using the HRRC-DLBP than employing the H-DLBP.</div></div>\",\"PeriodicalId\":50941,\"journal\":{\"name\":\"Advanced Engineering Informatics\",\"volume\":\"62 \",\"pages\":\"Article 102895\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474034624005469\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624005469","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Mixed integer programming and multi-objective enhanced differential evolution algorithm for human–robot responsive collaborative disassembly in remanufacturing system
The recycling of waste products is essential for resource reuse. However, turning operation direction causes significant fatigue to operators handling end-of-life (EoL) products, consequently degrading the recycling efficiency. Accordingly, this study employs responsive collaboration robots to aid operators in turning the operation direction of disassembled products. To solve the human-robot responsive collaboration disassembly line balancing problem (HRRC-DLBP), a mixed integer programming (MIP) model is constructed, and a decoding mechanism is designed in this study. Additionally, a multi-objective enhanced differential evolution algorithm (MEDE) in which the decoding mechanism is incorporated is devised and applied to solve the HRRC-DLBP. The MEDE algorithm is validated by comparing its solution results with those of the MIP model. Finally, the MEDE is used to optimise the EoL printer case for the HRRC-DLBP and the disassembly line balancing problem in which the operation direction is turned by humans (H-DLBP). The optimisation results show that the recycling of EoL products is more efficient using the HRRC-DLBP than employing the H-DLBP.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.