{"title":"高速列车的积分预测滑动模式控制:基于数据驱动的动态线性化和输入约束方案","authors":"Liang Zhou, Zhong-Qi Li, Hui Yang, Chang Tan","doi":"10.1016/j.conengprac.2024.106139","DOIUrl":null,"url":null,"abstract":"<div><div>A control scheme with high reliability and excellent tracking performance is essential for the automatic operation of high-speed trains (HSTs). In this study, a novel discrete-time data-driven predictive sliding mode control (DDPSMC) scheme is proposed for multi-power unit HSTs. Initially, a nonlinear integral terminal sliding mode surface was designed to replace the traditional linear sliding mode function, thereby achieving a rapid system error convergence and alleviating chattering. Then, receding horizon optimization was integrated into predictive control, which allowed the predicted sliding mode state to follow the expected trajectory of a predefined continuous convergence law. This scheme enabled the system to obtain higher output error accuracy and explicitly handle input constraints. Moreover, to enhance robustness, a parameter update law and disturbance delay estimation algorithm were introduced to calculate the control gain and total uncertainty, respectively. Finally, a comparative test of the proposed control scheme was conducted using a CRH380A HST simulation experimental platform in a laboratory setting. Simulation results demonstrate that the velocity error range of each power unit of the HST under the proposed control scheme is within [<span><math><mo>−</mo></math></span>0.176 km/h, 0.152 km/h], while the control force and acceleration are within [<span><math><mo>−</mo></math></span>55.7 kN, 44.8 kN] and [<span><math><mo>−</mo></math></span>0.564 m/s<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, 0.496 m/s<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>], respectively, with stable variation, and other performance indicators are also better than other comparison methods. These results satisfy the safety, stability, and punctuality requirements of the train.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"154 ","pages":"Article 106139"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral predictive sliding mode control for high-speed trains: A dynamic linearization and input constraint-based data-driven scheme\",\"authors\":\"Liang Zhou, Zhong-Qi Li, Hui Yang, Chang Tan\",\"doi\":\"10.1016/j.conengprac.2024.106139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A control scheme with high reliability and excellent tracking performance is essential for the automatic operation of high-speed trains (HSTs). In this study, a novel discrete-time data-driven predictive sliding mode control (DDPSMC) scheme is proposed for multi-power unit HSTs. Initially, a nonlinear integral terminal sliding mode surface was designed to replace the traditional linear sliding mode function, thereby achieving a rapid system error convergence and alleviating chattering. Then, receding horizon optimization was integrated into predictive control, which allowed the predicted sliding mode state to follow the expected trajectory of a predefined continuous convergence law. This scheme enabled the system to obtain higher output error accuracy and explicitly handle input constraints. Moreover, to enhance robustness, a parameter update law and disturbance delay estimation algorithm were introduced to calculate the control gain and total uncertainty, respectively. Finally, a comparative test of the proposed control scheme was conducted using a CRH380A HST simulation experimental platform in a laboratory setting. Simulation results demonstrate that the velocity error range of each power unit of the HST under the proposed control scheme is within [<span><math><mo>−</mo></math></span>0.176 km/h, 0.152 km/h], while the control force and acceleration are within [<span><math><mo>−</mo></math></span>55.7 kN, 44.8 kN] and [<span><math><mo>−</mo></math></span>0.564 m/s<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, 0.496 m/s<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>], respectively, with stable variation, and other performance indicators are also better than other comparison methods. These results satisfy the safety, stability, and punctuality requirements of the train.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"154 \",\"pages\":\"Article 106139\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124002983\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002983","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Integral predictive sliding mode control for high-speed trains: A dynamic linearization and input constraint-based data-driven scheme
A control scheme with high reliability and excellent tracking performance is essential for the automatic operation of high-speed trains (HSTs). In this study, a novel discrete-time data-driven predictive sliding mode control (DDPSMC) scheme is proposed for multi-power unit HSTs. Initially, a nonlinear integral terminal sliding mode surface was designed to replace the traditional linear sliding mode function, thereby achieving a rapid system error convergence and alleviating chattering. Then, receding horizon optimization was integrated into predictive control, which allowed the predicted sliding mode state to follow the expected trajectory of a predefined continuous convergence law. This scheme enabled the system to obtain higher output error accuracy and explicitly handle input constraints. Moreover, to enhance robustness, a parameter update law and disturbance delay estimation algorithm were introduced to calculate the control gain and total uncertainty, respectively. Finally, a comparative test of the proposed control scheme was conducted using a CRH380A HST simulation experimental platform in a laboratory setting. Simulation results demonstrate that the velocity error range of each power unit of the HST under the proposed control scheme is within [0.176 km/h, 0.152 km/h], while the control force and acceleration are within [55.7 kN, 44.8 kN] and [0.564 m/s, 0.496 m/s], respectively, with stable variation, and other performance indicators are also better than other comparison methods. These results satisfy the safety, stability, and punctuality requirements of the train.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.