Yongze Jin , Xiaohao Song , Yanxi Yang , Xinhong Hei , Nan Feng , Xubo Yang
{"title":"用于滚动轴承故障诊断的改进型多通道多尺度域对抗神经网络","authors":"Yongze Jin , Xiaohao Song , Yanxi Yang , Xinhong Hei , Nan Feng , Xubo Yang","doi":"10.1016/j.conengprac.2024.106120","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the fault diagnosis accuracy of rolling bearings under diverse working conditions, an improved domain adversarial neural network is proposed, the feature extraction module is reconstructed by multi-channel and multi-scale CNN-LSTM-ECA (MMCLE) in the proposed network. The MMCLE module consists of several key components. Firstly, the multi-channel multi-scale Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) are established to extract spatial features and temporal dependencies of the input data. Then, the Efficient Channel Attention (ECA) module is introduced to weight the effective feature channels. Finally, the domain adversarial training is employed to extract common features from both the source and target domains. By minimizing the domain offset between these domains, the faults of rolling bearing under diverse working conditions can be accurately diagnosed. The simulation results show that, based on the proposed MMCLE model, the domain offset issue can be effectively addressed, and the fault diagnosis accuracy can be improved for samples in the target domain under diverse working conditions. The accuracy and feasibility of the proposed method can be effectively verified.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"154 ","pages":"Article 106120"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved multi-channel and multi-scale domain adversarial neural network for fault diagnosis of the rolling bearing\",\"authors\":\"Yongze Jin , Xiaohao Song , Yanxi Yang , Xinhong Hei , Nan Feng , Xubo Yang\",\"doi\":\"10.1016/j.conengprac.2024.106120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To improve the fault diagnosis accuracy of rolling bearings under diverse working conditions, an improved domain adversarial neural network is proposed, the feature extraction module is reconstructed by multi-channel and multi-scale CNN-LSTM-ECA (MMCLE) in the proposed network. The MMCLE module consists of several key components. Firstly, the multi-channel multi-scale Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) are established to extract spatial features and temporal dependencies of the input data. Then, the Efficient Channel Attention (ECA) module is introduced to weight the effective feature channels. Finally, the domain adversarial training is employed to extract common features from both the source and target domains. By minimizing the domain offset between these domains, the faults of rolling bearing under diverse working conditions can be accurately diagnosed. The simulation results show that, based on the proposed MMCLE model, the domain offset issue can be effectively addressed, and the fault diagnosis accuracy can be improved for samples in the target domain under diverse working conditions. The accuracy and feasibility of the proposed method can be effectively verified.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"154 \",\"pages\":\"Article 106120\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096706612400279X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096706612400279X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
An improved multi-channel and multi-scale domain adversarial neural network for fault diagnosis of the rolling bearing
To improve the fault diagnosis accuracy of rolling bearings under diverse working conditions, an improved domain adversarial neural network is proposed, the feature extraction module is reconstructed by multi-channel and multi-scale CNN-LSTM-ECA (MMCLE) in the proposed network. The MMCLE module consists of several key components. Firstly, the multi-channel multi-scale Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) are established to extract spatial features and temporal dependencies of the input data. Then, the Efficient Channel Attention (ECA) module is introduced to weight the effective feature channels. Finally, the domain adversarial training is employed to extract common features from both the source and target domains. By minimizing the domain offset between these domains, the faults of rolling bearing under diverse working conditions can be accurately diagnosed. The simulation results show that, based on the proposed MMCLE model, the domain offset issue can be effectively addressed, and the fault diagnosis accuracy can be improved for samples in the target domain under diverse working conditions. The accuracy and feasibility of the proposed method can be effectively verified.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.