沙特阿拉伯太阳能浮动光伏发电前景综合评估:对比实验调查和热性能分析

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2024-10-19 DOI:10.1016/j.solener.2024.113015
Shafiqur Rehman , Kashif Irshad , Mohamed A. Mohandes , Ali Al-Shaikhi , Mohamed E. Zayed
{"title":"沙特阿拉伯太阳能浮动光伏发电前景综合评估:对比实验调查和热性能分析","authors":"Shafiqur Rehman ,&nbsp;Kashif Irshad ,&nbsp;Mohamed A. Mohandes ,&nbsp;Ali Al-Shaikhi ,&nbsp;Mohamed E. Zayed","doi":"10.1016/j.solener.2024.113015","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, floating photovoltaic systems have been regarded as a promising technology for producing clean energy by utilizing the surface of water bodies, such as lakes, rivers and oceans. This study introduces a comparative experimental study and energy performance evaluation of a 1.0 kW offshore floating photovoltaic (FPV) system and a nearby traditional ground-based PV system (GPV) installed in the eastern province of Saudi Arabia. The FPV system was deployed in the Arabian Gulf, 25 m off the coast, at an average depth of 1 to 1.5 m depending on tide, wave, and current intensity. The FPV system employs a strong novel eco-friendly platform structure made of recycled buoyant materials such as engineered plastic drums and wood. This system is anchored with tension cables and concrete blocks that can withstand the changing sea water conditions. The GPV system, on the other hand, was installed 150 m inland from the shore. Real-time monthly data monitoring and assessment indicated that FPV systems outperformed GPV systems in terms of lower PV panel surface temperatures, higher power output, and panel efficiency. Based on daily average back surface temperatures, FPV system temperature was decreased by 7.5 % to 21.34 % when compared to GPV. Moreover, the FPV system efficiency was also increased by 12.2 % when compared to the GPV system. This study aims to assist in promoting the applicability of solar floating photovoltaic systems to synergistically fulfill the requirements of sustainable electricity production for the arid costal community in Saudi Arabia and similar areas.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"283 ","pages":"Article 113015"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive evaluation of solar floating photovoltaic prospective in Saudi Arabia: Comparative experimental investigation and thermal performance analysis\",\"authors\":\"Shafiqur Rehman ,&nbsp;Kashif Irshad ,&nbsp;Mohamed A. Mohandes ,&nbsp;Ali Al-Shaikhi ,&nbsp;Mohamed E. Zayed\",\"doi\":\"10.1016/j.solener.2024.113015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, floating photovoltaic systems have been regarded as a promising technology for producing clean energy by utilizing the surface of water bodies, such as lakes, rivers and oceans. This study introduces a comparative experimental study and energy performance evaluation of a 1.0 kW offshore floating photovoltaic (FPV) system and a nearby traditional ground-based PV system (GPV) installed in the eastern province of Saudi Arabia. The FPV system was deployed in the Arabian Gulf, 25 m off the coast, at an average depth of 1 to 1.5 m depending on tide, wave, and current intensity. The FPV system employs a strong novel eco-friendly platform structure made of recycled buoyant materials such as engineered plastic drums and wood. This system is anchored with tension cables and concrete blocks that can withstand the changing sea water conditions. The GPV system, on the other hand, was installed 150 m inland from the shore. Real-time monthly data monitoring and assessment indicated that FPV systems outperformed GPV systems in terms of lower PV panel surface temperatures, higher power output, and panel efficiency. Based on daily average back surface temperatures, FPV system temperature was decreased by 7.5 % to 21.34 % when compared to GPV. Moreover, the FPV system efficiency was also increased by 12.2 % when compared to the GPV system. This study aims to assist in promoting the applicability of solar floating photovoltaic systems to synergistically fulfill the requirements of sustainable electricity production for the arid costal community in Saudi Arabia and similar areas.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"283 \",\"pages\":\"Article 113015\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X24007102\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24007102","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

最近,浮动光伏系统被认为是利用湖泊、河流和海洋等水体表面生产清洁能源的一种前景广阔的技术。本研究介绍了在沙特阿拉伯东部省份安装的 1.0 千瓦海上浮动光伏系统(FPV)和附近的传统地面光伏系统(GPV)的对比实验研究和能源性能评估。FPV 系统部署在距离海岸 25 米的阿拉伯湾,平均深度为 1 至 1.5 米,具体深度取决于潮汐、波浪和水流强度。FPV 系统采用坚固的新型环保平台结构,由工程塑料桶和木材等可回收浮力材料制成。该系统采用拉力缆绳和混凝土块进行锚固,可以承受海水条件的变化。GPV 系统则安装在距离海岸 150 米的内陆地区。每月实时数据监测和评估表明,FPV 系统在降低光伏板表面温度、提高功率输出和光伏板效率方面优于 GPV 系统。根据日平均背表面温度,FPV 系统的温度比 GPV 系统降低了 7.5% 至 21.34%。此外,与 GPV 系统相比,FPV 系统的效率也提高了 12.2%。本研究旨在协助推广太阳能浮动光伏系统的适用性,以协同满足沙特阿拉伯干旱沿海地区及类似地区的可持续电力生产要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive evaluation of solar floating photovoltaic prospective in Saudi Arabia: Comparative experimental investigation and thermal performance analysis
Recently, floating photovoltaic systems have been regarded as a promising technology for producing clean energy by utilizing the surface of water bodies, such as lakes, rivers and oceans. This study introduces a comparative experimental study and energy performance evaluation of a 1.0 kW offshore floating photovoltaic (FPV) system and a nearby traditional ground-based PV system (GPV) installed in the eastern province of Saudi Arabia. The FPV system was deployed in the Arabian Gulf, 25 m off the coast, at an average depth of 1 to 1.5 m depending on tide, wave, and current intensity. The FPV system employs a strong novel eco-friendly platform structure made of recycled buoyant materials such as engineered plastic drums and wood. This system is anchored with tension cables and concrete blocks that can withstand the changing sea water conditions. The GPV system, on the other hand, was installed 150 m inland from the shore. Real-time monthly data monitoring and assessment indicated that FPV systems outperformed GPV systems in terms of lower PV panel surface temperatures, higher power output, and panel efficiency. Based on daily average back surface temperatures, FPV system temperature was decreased by 7.5 % to 21.34 % when compared to GPV. Moreover, the FPV system efficiency was also increased by 12.2 % when compared to the GPV system. This study aims to assist in promoting the applicability of solar floating photovoltaic systems to synergistically fulfill the requirements of sustainable electricity production for the arid costal community in Saudi Arabia and similar areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Corrigendum to “Experimental investigation of a photovoltaic solar air conditioning system and comparison with conventional unit in the context of the state of Piaui, Brazil” [Sol. Energy 272 (2024) 112492] Sustainable desalination through hybrid photovoltaic/thermal membrane distillation: Development of an off-grid prototype Exploring bamboo based bio-photovoltaic devices: Pioneering sustainable solar innovations- A comprehensive review Design and analysis of inorganic tandem architecture with synergistically optimized BaSnS3 top and AgTaS3 bottom perovskite Sub-Cells Designing and optimizing the lead-free double perovskite Cs2AgBiI6/Cs2AgBiBr6 bilayer perovskite solar cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1