合成改性杂多酸并评估其作为大豆油环氧化相转移催化剂的性能

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Research & Design Pub Date : 2024-10-10 DOI:10.1016/j.cherd.2024.10.010
Juliana Cárdenas , Benjamin Katryniok , Marcia C. Araque-Marin , Alvaro Orjuela
{"title":"合成改性杂多酸并评估其作为大豆油环氧化相转移催化剂的性能","authors":"Juliana Cárdenas ,&nbsp;Benjamin Katryniok ,&nbsp;Marcia C. Araque-Marin ,&nbsp;Alvaro Orjuela","doi":"10.1016/j.cherd.2024.10.010","DOIUrl":null,"url":null,"abstract":"<div><div>Novel modified heteropolyacid (HPA) catalysts have been developed for the epoxidation of unsaturated vegetable oils. These were synthesized through hybridization of phosphotungstic acid (PTA) with cetyltrimethylammonium bromide (CTAB), tetrabutylammonium bromide (TBAB), and 1-dodecyl-3-methylimidazolium bromide (C<sub>12mim</sub>Br). Characterization of the modified HPAs was conducted using FT-IR, XRD, and TGA, and they were assessed as phase-transfer catalysts in the epoxidation of soybean oil (SO) with H<sub>2</sub>O<sub>2,</sub> in a two-phase system, without a percarboxylic acid intermediate. The performance of the epoxidation reaction was evaluated based on conversion (change of iodine value), selectivity (oxirane value), and productivity. The catalyst that exhibited superior performance was the phosphotungstic acid modified with CTAB corresponding to [C<sub>19</sub>H<sub>42</sub>N]<sub>3</sub>PW<sub>12</sub>O<sub>40</sub> (CTA<sub>3</sub>PTA). Subsequently, it was found that the introduction of acidity to the reaction medium significantly enhanced the catalytic activity of CTA<sub>3</sub>PTA by promoting active peroxo forms. Different ion exchange resins (Dowex 50WX2, Amberlyst 15, and Amberlite IR-120) were explored as co-catalysts for reaction. Effective epoxidation conditions were achieved at a temperature of 60 ºC, a molar ratio of double bond to H<sub>2</sub>O<sub>2</sub> of 1:2, and 2 g of Amberlite IR-120, resulting in a 4.6 % wt. oxirane value. Finally, the structure-performance relationship was discussed focusing on the influence of acidity in the epoxidation reaction.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"211 ","pages":"Pages 356-366"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of a modified heteropolyacid and evaluation as a phase-transfer catalyst for soybean oil epoxidation\",\"authors\":\"Juliana Cárdenas ,&nbsp;Benjamin Katryniok ,&nbsp;Marcia C. Araque-Marin ,&nbsp;Alvaro Orjuela\",\"doi\":\"10.1016/j.cherd.2024.10.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Novel modified heteropolyacid (HPA) catalysts have been developed for the epoxidation of unsaturated vegetable oils. These were synthesized through hybridization of phosphotungstic acid (PTA) with cetyltrimethylammonium bromide (CTAB), tetrabutylammonium bromide (TBAB), and 1-dodecyl-3-methylimidazolium bromide (C<sub>12mim</sub>Br). Characterization of the modified HPAs was conducted using FT-IR, XRD, and TGA, and they were assessed as phase-transfer catalysts in the epoxidation of soybean oil (SO) with H<sub>2</sub>O<sub>2,</sub> in a two-phase system, without a percarboxylic acid intermediate. The performance of the epoxidation reaction was evaluated based on conversion (change of iodine value), selectivity (oxirane value), and productivity. The catalyst that exhibited superior performance was the phosphotungstic acid modified with CTAB corresponding to [C<sub>19</sub>H<sub>42</sub>N]<sub>3</sub>PW<sub>12</sub>O<sub>40</sub> (CTA<sub>3</sub>PTA). Subsequently, it was found that the introduction of acidity to the reaction medium significantly enhanced the catalytic activity of CTA<sub>3</sub>PTA by promoting active peroxo forms. Different ion exchange resins (Dowex 50WX2, Amberlyst 15, and Amberlite IR-120) were explored as co-catalysts for reaction. Effective epoxidation conditions were achieved at a temperature of 60 ºC, a molar ratio of double bond to H<sub>2</sub>O<sub>2</sub> of 1:2, and 2 g of Amberlite IR-120, resulting in a 4.6 % wt. oxirane value. Finally, the structure-performance relationship was discussed focusing on the influence of acidity in the epoxidation reaction.</div></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":\"211 \",\"pages\":\"Pages 356-366\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876224005951\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224005951","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

为不饱和植物油的环氧化开发了新型改性杂多酸 (HPA) 催化剂。这些催化剂是通过磷钨酸(PTA)与十六烷基三甲基溴化铵(CTAB)、四丁基溴化铵(TBAB)和 1-十二烷基-3-甲基溴化咪唑鎓(C12mimBr)杂交合成的。利用傅立叶变换红外光谱、X 射线衍射和热重分析法对改性 HPA 进行了表征,并将其作为相转移催化剂,在两相体系中进行了大豆油(SO)与 H2O2 的环氧化反应评估,中间不含过羧酸。根据转化率(碘值变化)、选择性(环氧乙烷值)和生产率评估了环氧化反应的性能。表现出卓越性能的催化剂是用 CTAB(相当于 [C19H42N]3PW12O40 (CTA3PTA))修饰的磷钨酸。随后研究发现,在反应介质中引入酸性可促进活性过氧形式,从而显著提高 CTA3PTA 的催化活性。研究人员探索了不同的离子交换树脂(Dowex 50WX2、Amberlyst 15 和 Amberlite IR-120)作为反应的辅助催化剂。在温度为 60 ºC、双键与 H2O2 的摩尔比为 1:2、Amberlite IR-120 为 2 克的条件下,环氧化反应达到了有效的条件,产生了 4.6 % 重量比的环氧乙烷。最后,重点讨论了环氧化反应中酸度的影响,并讨论了结构-性能关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of a modified heteropolyacid and evaluation as a phase-transfer catalyst for soybean oil epoxidation
Novel modified heteropolyacid (HPA) catalysts have been developed for the epoxidation of unsaturated vegetable oils. These were synthesized through hybridization of phosphotungstic acid (PTA) with cetyltrimethylammonium bromide (CTAB), tetrabutylammonium bromide (TBAB), and 1-dodecyl-3-methylimidazolium bromide (C12mimBr). Characterization of the modified HPAs was conducted using FT-IR, XRD, and TGA, and they were assessed as phase-transfer catalysts in the epoxidation of soybean oil (SO) with H2O2, in a two-phase system, without a percarboxylic acid intermediate. The performance of the epoxidation reaction was evaluated based on conversion (change of iodine value), selectivity (oxirane value), and productivity. The catalyst that exhibited superior performance was the phosphotungstic acid modified with CTAB corresponding to [C19H42N]3PW12O40 (CTA3PTA). Subsequently, it was found that the introduction of acidity to the reaction medium significantly enhanced the catalytic activity of CTA3PTA by promoting active peroxo forms. Different ion exchange resins (Dowex 50WX2, Amberlyst 15, and Amberlite IR-120) were explored as co-catalysts for reaction. Effective epoxidation conditions were achieved at a temperature of 60 ºC, a molar ratio of double bond to H2O2 of 1:2, and 2 g of Amberlite IR-120, resulting in a 4.6 % wt. oxirane value. Finally, the structure-performance relationship was discussed focusing on the influence of acidity in the epoxidation reaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
期刊最新文献
Corrigendum to “Enhanced DeNOx catalysis: Induction-heating-catalysis-ready 3D stable Ni supported metal combinations” [Chem. Eng. Res. Des. 207 (2024) 404–419] Cu-Ni synergy in physicochemical properties of the Mg-Al oxides matrix to selective glycerol carbonate production Design of China first pilot plant for supercritical hydrothermal synthesis of AgNPs A high performance of thin film composite based on dextran substrate for effective removal of heavy metal ions Accelerating catalytic experimentation of water gas shift reaction using machine learning models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1