{"title":"多孔介质中不相溶两相流的粘性耦合效应的孔隙尺度研究","authors":"Jingsen Feng, Yang Liu, Jingchun Min","doi":"10.1016/j.cherd.2024.10.019","DOIUrl":null,"url":null,"abstract":"<div><div>Viscous coupling effect plays a significant role in immiscible two-phase flow within porous media, while its influence on relative permeability remains uncertain. In this paper, an improved MRT-based viscosity-modified multicomponent multiphase (MCMP) pseudopotential lattice Boltzmann model, capable of handling high viscosity ratio, is employed to simulate two-phase flow with different viscosities in a cross-array circular structure and a real rock structure, respectively. The applicability of this model for two-phase flow with various viscosity ratios has been verified by some typical tests. Systematically, the effects of viscosity ratio, structural configuration, and wetting condition on the relative permeability curves are investigated in conjunction with their component distributions and velocity fields at different two-phase saturations. These results indicate that due to the two-phase flow competition under different structural conditions, the viscous coupling effect has varying degrees of impacts on the mobility of thin phase and viscous phase. Further, the mechanism of two-phase lubricating effect is also discussed under different wetting conditions at Darcy flow regime.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"211 ","pages":"Pages 379-390"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pore-scale investigation of viscous coupling effect on immiscible two-phase flow in porous media\",\"authors\":\"Jingsen Feng, Yang Liu, Jingchun Min\",\"doi\":\"10.1016/j.cherd.2024.10.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Viscous coupling effect plays a significant role in immiscible two-phase flow within porous media, while its influence on relative permeability remains uncertain. In this paper, an improved MRT-based viscosity-modified multicomponent multiphase (MCMP) pseudopotential lattice Boltzmann model, capable of handling high viscosity ratio, is employed to simulate two-phase flow with different viscosities in a cross-array circular structure and a real rock structure, respectively. The applicability of this model for two-phase flow with various viscosity ratios has been verified by some typical tests. Systematically, the effects of viscosity ratio, structural configuration, and wetting condition on the relative permeability curves are investigated in conjunction with their component distributions and velocity fields at different two-phase saturations. These results indicate that due to the two-phase flow competition under different structural conditions, the viscous coupling effect has varying degrees of impacts on the mobility of thin phase and viscous phase. Further, the mechanism of two-phase lubricating effect is also discussed under different wetting conditions at Darcy flow regime.</div></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":\"211 \",\"pages\":\"Pages 379-390\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876224006038\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224006038","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A pore-scale investigation of viscous coupling effect on immiscible two-phase flow in porous media
Viscous coupling effect plays a significant role in immiscible two-phase flow within porous media, while its influence on relative permeability remains uncertain. In this paper, an improved MRT-based viscosity-modified multicomponent multiphase (MCMP) pseudopotential lattice Boltzmann model, capable of handling high viscosity ratio, is employed to simulate two-phase flow with different viscosities in a cross-array circular structure and a real rock structure, respectively. The applicability of this model for two-phase flow with various viscosity ratios has been verified by some typical tests. Systematically, the effects of viscosity ratio, structural configuration, and wetting condition on the relative permeability curves are investigated in conjunction with their component distributions and velocity fields at different two-phase saturations. These results indicate that due to the two-phase flow competition under different structural conditions, the viscous coupling effect has varying degrees of impacts on the mobility of thin phase and viscous phase. Further, the mechanism of two-phase lubricating effect is also discussed under different wetting conditions at Darcy flow regime.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.