为生物质快速热解整合储能系统并确定最佳太阳能系统尺寸

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Research & Design Pub Date : 2024-10-16 DOI:10.1016/j.cherd.2024.10.015
Dadullah Khudayar , Juma Haydary , Mehdi Mehrpooya , Seyed Mohammad Ali Moosavian
{"title":"为生物质快速热解整合储能系统并确定最佳太阳能系统尺寸","authors":"Dadullah Khudayar ,&nbsp;Juma Haydary ,&nbsp;Mehdi Mehrpooya ,&nbsp;Seyed Mohammad Ali Moosavian","doi":"10.1016/j.cherd.2024.10.015","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a model and analysis of a heliostat field collector (HFC) system integration with fast-pyrolysis of biomass and determination of the optimal solar system size for this integrated system. Given the intermittent nature of solar energy, an auxiliary heater and a thermochemical energy storage system (TCES) are included. Four cases of HFC integration with the fast-pyrolysis process have been studied: 1) low solar radiation, 2) sufficient solar radiation, 3) high solar radiation, and 4) no solar radiation with available stored energy in TCES. The solar energy system was modeled and calculated using the Engineering Equation Solver (EES) software, while the fast-pyrolysis process and the TCES were simulated using the Aspen Plus software. A thermodynamic and economic analysis has been conducted to estimate the share of solar energy for different process configurations. Economic calculations have been conducted for three different heliostat filed areas: 4000, 8000, and 12000 m<sup>2</sup>. Solar fraction, investment and operational costs, as well as total cost were calculated for these three heliostat field areas. The results indicate that the optimum heliostat field area for the studied biomass pyrolysis plant is 8000 m<sup>2</sup> and the average solar fraction of the required energy in summer is 0.39 and while it is 0.34 for the whole year. Simulation results considering this optimized heliostat filed area indicate that 6.27 t/h of bio-oil is produced from 10 t/h of hybrid poplar biomass. Implementing this solar-assisted system reduces CO<sub>2</sub> emissions, increases efficiency of the system and lowers thermal energy requirement for the fast-pyrolysis process from 6 MW to 3.99 MW.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"211 ","pages":"Pages 343-355"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of energy storage and determination of optimal solar system size for biomass fast-pyrolysis\",\"authors\":\"Dadullah Khudayar ,&nbsp;Juma Haydary ,&nbsp;Mehdi Mehrpooya ,&nbsp;Seyed Mohammad Ali Moosavian\",\"doi\":\"10.1016/j.cherd.2024.10.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a model and analysis of a heliostat field collector (HFC) system integration with fast-pyrolysis of biomass and determination of the optimal solar system size for this integrated system. Given the intermittent nature of solar energy, an auxiliary heater and a thermochemical energy storage system (TCES) are included. Four cases of HFC integration with the fast-pyrolysis process have been studied: 1) low solar radiation, 2) sufficient solar radiation, 3) high solar radiation, and 4) no solar radiation with available stored energy in TCES. The solar energy system was modeled and calculated using the Engineering Equation Solver (EES) software, while the fast-pyrolysis process and the TCES were simulated using the Aspen Plus software. A thermodynamic and economic analysis has been conducted to estimate the share of solar energy for different process configurations. Economic calculations have been conducted for three different heliostat filed areas: 4000, 8000, and 12000 m<sup>2</sup>. Solar fraction, investment and operational costs, as well as total cost were calculated for these three heliostat field areas. The results indicate that the optimum heliostat field area for the studied biomass pyrolysis plant is 8000 m<sup>2</sup> and the average solar fraction of the required energy in summer is 0.39 and while it is 0.34 for the whole year. Simulation results considering this optimized heliostat filed area indicate that 6.27 t/h of bio-oil is produced from 10 t/h of hybrid poplar biomass. Implementing this solar-assisted system reduces CO<sub>2</sub> emissions, increases efficiency of the system and lowers thermal energy requirement for the fast-pyrolysis process from 6 MW to 3.99 MW.</div></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":\"211 \",\"pages\":\"Pages 343-355\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876224006002\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224006002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了定日镜场集热器(HFC)系统与生物质快速热解集成的模型和分析,并确定了该集成系统的最佳太阳能系统尺寸。考虑到太阳能的间歇性,还包括辅助加热器和热化学储能系统(TCES)。研究了 HFC 与快速热解工艺集成的四种情况:1)低太阳辐射;2)充足的太阳辐射;3)高太阳辐射;4)无太阳辐射且 TCES 中可储存能量。太阳能系统使用工程方程求解器 (EES) 软件进行建模和计算,而快速热解过程和 TCES 则使用 Aspen Plus 软件进行模拟。进行了热力学和经济学分析,以估算不同工艺配置下的太阳能份额。经济计算针对三种不同的定日镜申请区域进行:分别为 4000、8000 和 12000 平方米。计算了这三个定日镜区域的太阳能比例、投资和运营成本以及总成本。结果表明,所研究的生物质热解工厂的最佳定日镜面积为 8000 平方米,夏季所需能源的平均太阳辐射分量为 0.39,全年为 0.34。根据优化后的定日镜备案面积得出的模拟结果表明,每小时 10 吨杂交杨生物质可生产 6.27 吨生物油。采用这种太阳能辅助系统可减少二氧化碳排放,提高系统效率,并将快速热解过程所需的热能从 6 兆瓦降至 3.99 兆瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of energy storage and determination of optimal solar system size for biomass fast-pyrolysis
This study presents a model and analysis of a heliostat field collector (HFC) system integration with fast-pyrolysis of biomass and determination of the optimal solar system size for this integrated system. Given the intermittent nature of solar energy, an auxiliary heater and a thermochemical energy storage system (TCES) are included. Four cases of HFC integration with the fast-pyrolysis process have been studied: 1) low solar radiation, 2) sufficient solar radiation, 3) high solar radiation, and 4) no solar radiation with available stored energy in TCES. The solar energy system was modeled and calculated using the Engineering Equation Solver (EES) software, while the fast-pyrolysis process and the TCES were simulated using the Aspen Plus software. A thermodynamic and economic analysis has been conducted to estimate the share of solar energy for different process configurations. Economic calculations have been conducted for three different heliostat filed areas: 4000, 8000, and 12000 m2. Solar fraction, investment and operational costs, as well as total cost were calculated for these three heliostat field areas. The results indicate that the optimum heliostat field area for the studied biomass pyrolysis plant is 8000 m2 and the average solar fraction of the required energy in summer is 0.39 and while it is 0.34 for the whole year. Simulation results considering this optimized heliostat filed area indicate that 6.27 t/h of bio-oil is produced from 10 t/h of hybrid poplar biomass. Implementing this solar-assisted system reduces CO2 emissions, increases efficiency of the system and lowers thermal energy requirement for the fast-pyrolysis process from 6 MW to 3.99 MW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
期刊最新文献
Corrigendum to “Enhanced DeNOx catalysis: Induction-heating-catalysis-ready 3D stable Ni supported metal combinations” [Chem. Eng. Res. Des. 207 (2024) 404–419] Cu-Ni synergy in physicochemical properties of the Mg-Al oxides matrix to selective glycerol carbonate production Design of China first pilot plant for supercritical hydrothermal synthesis of AgNPs A high performance of thin film composite based on dextran substrate for effective removal of heavy metal ions Accelerating catalytic experimentation of water gas shift reaction using machine learning models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1