接近香港的台风的表面气压和风场特征

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Journal of Wind Engineering and Industrial Aerodynamics Pub Date : 2024-10-25 DOI:10.1016/j.jweia.2024.105934
Feng Hu , Junyi He , Zhifei Liu , Qiusheng Li , Pak-Wai Chan
{"title":"接近香港的台风的表面气压和风场特征","authors":"Feng Hu ,&nbsp;Junyi He ,&nbsp;Zhifei Liu ,&nbsp;Qiusheng Li ,&nbsp;Pak-Wai Chan","doi":"10.1016/j.jweia.2024.105934","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, 17 severe typhoons that have affected Hong Kong are simulated using an advanced numerical atmospheric simulation system - Weather Research and Forecasting model (WRF). The simulated surface pressure and wind fields of these typhoons are validated against a wide range of field observations. Then azimuth-dependent models for the radius of maximum winds and the Holland parameter are established statistically at the surface level. It is observed that the shape parameter of the Holland pressure model is smaller at the surface than that at the gradient level. And the Holland wind field model cannot well reproduce the simulated radial wind profiles due to the complexities of nonuniform surface conditions and typhoon dynamics. It is found that the modified Rankine model provides satisfactory estimates of typhoon wind speeds in Hong Kong. Additionally, wind field asymmetries of typhoons approaching Hong Kong are highly correlated with the typhoon track velocity, vertical wind shear and the angle between them. The proposed statistical models and identified characteristics of wind field asymmetries of typhoons will provide useful information for rapidly assessing typhoon wind hazards.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"254 ","pages":"Article 105934"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing surface pressure and wind fields of typhoons approaching Hong Kong\",\"authors\":\"Feng Hu ,&nbsp;Junyi He ,&nbsp;Zhifei Liu ,&nbsp;Qiusheng Li ,&nbsp;Pak-Wai Chan\",\"doi\":\"10.1016/j.jweia.2024.105934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, 17 severe typhoons that have affected Hong Kong are simulated using an advanced numerical atmospheric simulation system - Weather Research and Forecasting model (WRF). The simulated surface pressure and wind fields of these typhoons are validated against a wide range of field observations. Then azimuth-dependent models for the radius of maximum winds and the Holland parameter are established statistically at the surface level. It is observed that the shape parameter of the Holland pressure model is smaller at the surface than that at the gradient level. And the Holland wind field model cannot well reproduce the simulated radial wind profiles due to the complexities of nonuniform surface conditions and typhoon dynamics. It is found that the modified Rankine model provides satisfactory estimates of typhoon wind speeds in Hong Kong. Additionally, wind field asymmetries of typhoons approaching Hong Kong are highly correlated with the typhoon track velocity, vertical wind shear and the angle between them. The proposed statistical models and identified characteristics of wind field asymmetries of typhoons will provide useful information for rapidly assessing typhoon wind hazards.</div></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"254 \",\"pages\":\"Article 105934\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167610524002976\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524002976","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文利用先进的数值大气模拟系统--天气研究和预报模式(WRF),模拟了 17 个影响香港的强台风。这些台风的模拟表面气压和风场与大量实地观测数据进行了验证。然后,从统计角度建立了地表最大风半径和霍兰参数的方位角模型。结果表明,地表霍兰压力模型的形状参数小于梯度参数。由于非均匀表面条件和台风动力学的复杂性,荷兰风场模型不能很好地再现模拟的径向风廓线。研究发现,修正的朗肯模型对香港台风风速的估计令人满意。此外,接近香港的台风的风场不对称性与台风路径速度、垂直风切变和它们之间的角度高度相关。建议的统计模型和确定的台风风场不对称特征将为快速评估台风风灾提供有用信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing surface pressure and wind fields of typhoons approaching Hong Kong
In this paper, 17 severe typhoons that have affected Hong Kong are simulated using an advanced numerical atmospheric simulation system - Weather Research and Forecasting model (WRF). The simulated surface pressure and wind fields of these typhoons are validated against a wide range of field observations. Then azimuth-dependent models for the radius of maximum winds and the Holland parameter are established statistically at the surface level. It is observed that the shape parameter of the Holland pressure model is smaller at the surface than that at the gradient level. And the Holland wind field model cannot well reproduce the simulated radial wind profiles due to the complexities of nonuniform surface conditions and typhoon dynamics. It is found that the modified Rankine model provides satisfactory estimates of typhoon wind speeds in Hong Kong. Additionally, wind field asymmetries of typhoons approaching Hong Kong are highly correlated with the typhoon track velocity, vertical wind shear and the angle between them. The proposed statistical models and identified characteristics of wind field asymmetries of typhoons will provide useful information for rapidly assessing typhoon wind hazards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
22.90%
发文量
306
审稿时长
4.4 months
期刊介绍: The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects. Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.
期刊最新文献
Evaluating different categories of turbulence models for calculating air pollutant dispersion in street canyons with generic and real urban layouts Numerical simulation and experimental study of the effects of retaining block structures on wavefront steepening in rail tunnels A wake prediction framework based on the MOST Gaussian wake model and a deep learning approach Advanced statistical analysis of vortex-induced vibrations in suspension bridge hangers with and without Stockbridge dampers Converting dependence of extreme wind pressure coefficients across different epochs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1