行星动力生成的早期和延长期

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Earth and Planetary Science Letters Pub Date : 2024-10-22 DOI:10.1016/j.epsl.2024.119083
Hannah R. Sanderson, James F.J. Bryson, Claire I.O. Nichols
{"title":"行星动力生成的早期和延长期","authors":"Hannah R. Sanderson,&nbsp;James F.J. Bryson,&nbsp;Claire I.O. Nichols","doi":"10.1016/j.epsl.2024.119083","DOIUrl":null,"url":null,"abstract":"<div><div>Accreting in the first few million years (Ma) of the Solar System, planetesimals record conditions in the protoplanetary disc and are the remnants of planetary formation processes. The meteorite paleomagnetic record carries key insights into the thermal history of planetesimals and their extent of differentiation. The current paradigm splits the meteorite paleomagnetic record into three magnetic field generation epochs: an early nebula field (≲5<!--> <!-->Ma after CAI formation), followed by thermal dynamos (∼5–34<!--> <!-->Ma after CAI formation), then a gap in dynamo generation, before the onset of core solidification and compositional dynamos. These epochs have been defined using current thermal evolution and dynamo generation models of planetesimals. Here, we demonstrate these epochs are not as distinct as previously thought based on refined thermal evolution models that include more realistic parametrisations for mantle convection, non-eutectic core solidification, and radiogenic <sup>60</sup>Fe in the core. We find thermal dynamos can start earlier and last longer. Inclusion of appreciable <sup>60</sup>Fe in the core brings forward the onset of dynamo generation to ∼1–2<!--> <!-->Ma after CAI formation, which overlaps with the existence of the nebula field. The second epoch of dynamo generation begins prior to the onset of core solidification this epoch is not purely compositionally driven. Planetesimal radius is the dominant control on the strength and duration of dynamo generation, and the choice of reference viscosity can widen the gap between epochs of dynamo generation from 0–200<!--> <!-->Ma. Overall, variations in planetesimal properties lead to more variable timings of different planetesimal magnetic field generation mechanisms than previously thought. This alters the information we can glean from the meteorite paleomagnetic record about the early Solar System. Evidence for the nebula field requires more careful interpretation, and late paleomagnetic remanences, for example in the pallasites, may not be evidence for planetesimal core solidification.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"648 ","pages":"Article 119083"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early and elongated epochs of planetesimal dynamo generation\",\"authors\":\"Hannah R. Sanderson,&nbsp;James F.J. Bryson,&nbsp;Claire I.O. Nichols\",\"doi\":\"10.1016/j.epsl.2024.119083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accreting in the first few million years (Ma) of the Solar System, planetesimals record conditions in the protoplanetary disc and are the remnants of planetary formation processes. The meteorite paleomagnetic record carries key insights into the thermal history of planetesimals and their extent of differentiation. The current paradigm splits the meteorite paleomagnetic record into three magnetic field generation epochs: an early nebula field (≲5<!--> <!-->Ma after CAI formation), followed by thermal dynamos (∼5–34<!--> <!-->Ma after CAI formation), then a gap in dynamo generation, before the onset of core solidification and compositional dynamos. These epochs have been defined using current thermal evolution and dynamo generation models of planetesimals. Here, we demonstrate these epochs are not as distinct as previously thought based on refined thermal evolution models that include more realistic parametrisations for mantle convection, non-eutectic core solidification, and radiogenic <sup>60</sup>Fe in the core. We find thermal dynamos can start earlier and last longer. Inclusion of appreciable <sup>60</sup>Fe in the core brings forward the onset of dynamo generation to ∼1–2<!--> <!-->Ma after CAI formation, which overlaps with the existence of the nebula field. The second epoch of dynamo generation begins prior to the onset of core solidification this epoch is not purely compositionally driven. Planetesimal radius is the dominant control on the strength and duration of dynamo generation, and the choice of reference viscosity can widen the gap between epochs of dynamo generation from 0–200<!--> <!-->Ma. Overall, variations in planetesimal properties lead to more variable timings of different planetesimal magnetic field generation mechanisms than previously thought. This alters the information we can glean from the meteorite paleomagnetic record about the early Solar System. Evidence for the nebula field requires more careful interpretation, and late paleomagnetic remanences, for example in the pallasites, may not be evidence for planetesimal core solidification.</div></div>\",\"PeriodicalId\":11481,\"journal\":{\"name\":\"Earth and Planetary Science Letters\",\"volume\":\"648 \",\"pages\":\"Article 119083\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012821X24005156\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24005156","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

陨石在太阳系最初的几百万年(Ma)内增殖,记录了原行星盘的状况,是行星形成过程的残留物。陨石的古地磁记录是了解类地行星热历史及其分化程度的关键。目前的研究范式将陨石古地磁记录分为三个磁场产生时代:早期星云磁场(CAI 形成后 ∼5 Ma),随后是热动力(CAI 形成后 ∼5-34 Ma),然后是动力产生的间隙期,然后才是内核凝固和成分动力的开始。这些纪元是利用目前的行星热演化和动力生成模型定义的。在这里,我们根据完善的热演化模型,包括地幔对流、非共晶内核凝固和内核放射性 60Fe 的更现实的参数,证明这些时代并不像以前认为的那样截然不同。我们发现热动力可以更早开始,持续时间更长。在地核中加入可观的60Fe会使动力产生的起始时间提前到CAI形成后的1-2 Ma,这与星云场的存在时间重叠。动力产生的第二个纪元开始于内核凝固开始之前,这个纪元并非纯粹由成分驱动。行星半径是控制动力产生的强度和持续时间的主要因素,参考粘度的选择可以扩大0-200 Ma动力产生纪元之间的差距。总之,行星性质的变化导致不同行星磁场产生机制的时间比以前想象的更多变。这改变了我们可以从陨石古地磁记录中收集到的有关早期太阳系的信息。星云磁场的证据需要更仔细的解释,而晚期古地磁再现,例如帕拉斯岩中的古地磁再现,可能并不是行星核心凝固的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Early and elongated epochs of planetesimal dynamo generation
Accreting in the first few million years (Ma) of the Solar System, planetesimals record conditions in the protoplanetary disc and are the remnants of planetary formation processes. The meteorite paleomagnetic record carries key insights into the thermal history of planetesimals and their extent of differentiation. The current paradigm splits the meteorite paleomagnetic record into three magnetic field generation epochs: an early nebula field (≲5 Ma after CAI formation), followed by thermal dynamos (∼5–34 Ma after CAI formation), then a gap in dynamo generation, before the onset of core solidification and compositional dynamos. These epochs have been defined using current thermal evolution and dynamo generation models of planetesimals. Here, we demonstrate these epochs are not as distinct as previously thought based on refined thermal evolution models that include more realistic parametrisations for mantle convection, non-eutectic core solidification, and radiogenic 60Fe in the core. We find thermal dynamos can start earlier and last longer. Inclusion of appreciable 60Fe in the core brings forward the onset of dynamo generation to ∼1–2 Ma after CAI formation, which overlaps with the existence of the nebula field. The second epoch of dynamo generation begins prior to the onset of core solidification this epoch is not purely compositionally driven. Planetesimal radius is the dominant control on the strength and duration of dynamo generation, and the choice of reference viscosity can widen the gap between epochs of dynamo generation from 0–200 Ma. Overall, variations in planetesimal properties lead to more variable timings of different planetesimal magnetic field generation mechanisms than previously thought. This alters the information we can glean from the meteorite paleomagnetic record about the early Solar System. Evidence for the nebula field requires more careful interpretation, and late paleomagnetic remanences, for example in the pallasites, may not be evidence for planetesimal core solidification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
期刊最新文献
Elemental-organic geochemical evidence for the lacustrine metalimnetic oxygen minimum dynamics in the Mid-Late Triassic Chang 7 shales Inverted metamorphic gradient in the Zanhuang nappe/thrust system, north China indicates large-scale thrust stacking in an Archean Orogen Subduction-stalled plume tail triggers Tarim large igneous province Editorial Board Diffusion of Sr and Ba in plagioclase: Composition and silica activity dependencies, and application to volcanic rocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1