通过激光冲击强化改善线弧定向能沉积钛合金的梯度微观结构和性能

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: A Pub Date : 2024-10-22 DOI:10.1016/j.msea.2024.147422
Guanda Qu , Wei Guo , Jiaxin Shi , Dongsheng He , Yongxin Zhang , Yihao Dong , Jiaxuan Chi , Zhikang Shen , Ying Li , Zhenlin Chen , Hongqiang Zhang
{"title":"通过激光冲击强化改善线弧定向能沉积钛合金的梯度微观结构和性能","authors":"Guanda Qu ,&nbsp;Wei Guo ,&nbsp;Jiaxin Shi ,&nbsp;Dongsheng He ,&nbsp;Yongxin Zhang ,&nbsp;Yihao Dong ,&nbsp;Jiaxuan Chi ,&nbsp;Zhikang Shen ,&nbsp;Ying Li ,&nbsp;Zhenlin Chen ,&nbsp;Hongqiang Zhang","doi":"10.1016/j.msea.2024.147422","DOIUrl":null,"url":null,"abstract":"<div><div>Wire-arc directed energy deposition (WADED) technology has been widely used in the remanufacturing of titanium alloy structural components benefited from with the advantages such as high deposition efficiency and low cost. However, due to the coarse and anisotropic microstructure, the complex internal stresses and processing-induced rough surface significantly reduce fatigue performance and reliability of the remanufactured structural components. In this work, surface modification of titanium alloy WADED repair component was carried out via laser shock peening (LSP), and its gradient structure, microhardness, residual stress and fatigue performance and enhancement mechanism were systematically investigated. Results indicated that the different microstructure of each region led to different responses under the action of LSP, which was related to the change of dislocation density. LSP induced crystal defects such as high-density dislocations, twins and stacking faults on the surface. A variety of crystal defects gradually decreased with the depth from the strengthened surface, formed a gradient microstructure and significantly affected the microhardness and residual stress of the repaired components. The surface hardness and compressive residual stress of the repaired components were greatly increased after LSP and the hardened layer and compressive residual stress depth affected layer were 600 μm and 800 μm, respectively. The average fatigue life of the additive repair component increased by 197 % under the synergistic effect of compressive residual stress and gradient microstructure.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"918 ","pages":"Article 147422"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of gradient microstructure and properties of wire-arc directed energy deposition titanium alloy via laser shock peening\",\"authors\":\"Guanda Qu ,&nbsp;Wei Guo ,&nbsp;Jiaxin Shi ,&nbsp;Dongsheng He ,&nbsp;Yongxin Zhang ,&nbsp;Yihao Dong ,&nbsp;Jiaxuan Chi ,&nbsp;Zhikang Shen ,&nbsp;Ying Li ,&nbsp;Zhenlin Chen ,&nbsp;Hongqiang Zhang\",\"doi\":\"10.1016/j.msea.2024.147422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wire-arc directed energy deposition (WADED) technology has been widely used in the remanufacturing of titanium alloy structural components benefited from with the advantages such as high deposition efficiency and low cost. However, due to the coarse and anisotropic microstructure, the complex internal stresses and processing-induced rough surface significantly reduce fatigue performance and reliability of the remanufactured structural components. In this work, surface modification of titanium alloy WADED repair component was carried out via laser shock peening (LSP), and its gradient structure, microhardness, residual stress and fatigue performance and enhancement mechanism were systematically investigated. Results indicated that the different microstructure of each region led to different responses under the action of LSP, which was related to the change of dislocation density. LSP induced crystal defects such as high-density dislocations, twins and stacking faults on the surface. A variety of crystal defects gradually decreased with the depth from the strengthened surface, formed a gradient microstructure and significantly affected the microhardness and residual stress of the repaired components. The surface hardness and compressive residual stress of the repaired components were greatly increased after LSP and the hardened layer and compressive residual stress depth affected layer were 600 μm and 800 μm, respectively. The average fatigue life of the additive repair component increased by 197 % under the synergistic effect of compressive residual stress and gradient microstructure.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"918 \",\"pages\":\"Article 147422\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509324013534\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509324013534","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

线弧定向能沉积(WADED)技术具有沉积效率高、成本低等优点,已被广泛应用于钛合金结构部件的再制造。然而,由于钛合金微观结构粗糙且各向异性,复杂的内应力和加工引起的粗糙表面大大降低了再制造结构部件的疲劳性能和可靠性。在这项工作中,通过激光冲击强化(LSP)对钛合金 WADED 修复部件进行了表面改性,并系统地研究了其梯度结构、显微硬度、残余应力和疲劳性能及增强机制。结果表明,在 LSP 作用下,每个区域的不同微观结构会导致不同的反应,这与位错密度的变化有关。LSP 在表面诱发了高密度位错、孪晶和堆积断层等晶体缺陷。各种晶体缺陷随强化表面深度的增加而逐渐减少,形成梯度微观结构,并对修复后部件的显微硬度和残余应力产生显著影响。LSP 后,修复部件的表面硬度和压缩残余应力均大幅提高,硬化层和压缩残余应力影响层深度分别为 600 μm 和 800 μm。在压缩残余应力和梯度微结构的协同作用下,添加剂修复组件的平均疲劳寿命提高了 197%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of gradient microstructure and properties of wire-arc directed energy deposition titanium alloy via laser shock peening
Wire-arc directed energy deposition (WADED) technology has been widely used in the remanufacturing of titanium alloy structural components benefited from with the advantages such as high deposition efficiency and low cost. However, due to the coarse and anisotropic microstructure, the complex internal stresses and processing-induced rough surface significantly reduce fatigue performance and reliability of the remanufactured structural components. In this work, surface modification of titanium alloy WADED repair component was carried out via laser shock peening (LSP), and its gradient structure, microhardness, residual stress and fatigue performance and enhancement mechanism were systematically investigated. Results indicated that the different microstructure of each region led to different responses under the action of LSP, which was related to the change of dislocation density. LSP induced crystal defects such as high-density dislocations, twins and stacking faults on the surface. A variety of crystal defects gradually decreased with the depth from the strengthened surface, formed a gradient microstructure and significantly affected the microhardness and residual stress of the repaired components. The surface hardness and compressive residual stress of the repaired components were greatly increased after LSP and the hardened layer and compressive residual stress depth affected layer were 600 μm and 800 μm, respectively. The average fatigue life of the additive repair component increased by 197 % under the synergistic effect of compressive residual stress and gradient microstructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
期刊最新文献
Effects of σ phase embrittlement and Al addition on the ductile-brittle transition in super ferritic stainless steels Precipitation and TRIP enhanced spallation resistance of additive manufactured M350 steel Thermo-mechanical response and form-stability of a fully metallic composite phase change material: Dilatometric tests and finite element analysis A novel strategy for preparing gradient grained Mg alloy by normal extrusion process The effects of loading direction on the dynamic impact response of additively manufactured M350 maraging steel-Al0.5CoCrFeNi1.5 hybrid plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1