Emma S. Sosa , Claire E. Bucholz , Juan David Hernández-Montenegro , Andrés Rodríguez-Vargas , Michael A. Kipp , François L.H. Tissot
{"title":"大陆弧中通过闪石脱水形成的石榴石霞石:铁同位素提供的证据","authors":"Emma S. Sosa , Claire E. Bucholz , Juan David Hernández-Montenegro , Andrés Rodríguez-Vargas , Michael A. Kipp , François L.H. Tissot","doi":"10.1016/j.epsl.2024.119050","DOIUrl":null,"url":null,"abstract":"<div><div>Lower-crustal garnet clinopyroxenite (sometimes termed “arclogite”) fractionation in thick-crustal (>35 km) arc settings presents a compelling model to explain Fe-depletion trends, high oxygen fugacity, and evidence of recent delamination observed in many continental arcs. However, the origin of the garnet clinopyroxenites via igneous or metamorphic processes remains unclear. Due to the preferential incorporation of light Fe isotopes in garnet relative to clinopyroxene or amphibole, Fe isotopes are ideally suited for studying the effects of garnet fractionation on magmatic systems. Here, we present whole-rock and mineral Fe isotope data from a suite of lower to mid/upper-crustal Andean xenoliths from Mercaderes, Colombia. This data is combined with petrography, major and trace element mineral and whole-rock chemistry, geothermobarometry, and thermodynamic modeling to explore the xenoliths' petrogenesis and the Northern Andes' crustal structure. Whole-rock samples display a narrow range of Fe isotope compositions (δ<sup>56</sup>Fe = –0.02 to +0.11 ‰), which do not correlate with lithology, chemistry, or pressure-temperature conditions. This result is inconsistent with previous studies predicting the existence of an isotopically light Fe reservoir in the garnet-rich lower Andean crust. Through thermodynamic modeling, we show that the lack of isotopic fractionation in the Mercaderes xenoliths is more consistent with the suite representing a prograde metamorphic sequence, in which amphibole dehydration reactions drive metamorphism of mid/upper-crustal diorite protoliths. While our data do not preclude the presence of garnet clinopyroxenite cumulates at the base of the Andean crust, or that the delamination of such cumulates played an important role in the evolution of the Andes, they do indicate that not all garnet clinopyroxenites are cumulate in origin. Instead, the lower Andean crust represents an amalgamation of igneous and metamorphic rock, with metamorphism of mid-crustal lithologies and partial melting of mafic cumulate roots acting in tandem to drive densification and delamination of the lower crust in a self-feeding mechanism.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"648 ","pages":"Article 119050"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Garnet clinopyroxenite formation via amphibole-dehydration in continental arcs: Evidence from Fe isotopes\",\"authors\":\"Emma S. Sosa , Claire E. Bucholz , Juan David Hernández-Montenegro , Andrés Rodríguez-Vargas , Michael A. Kipp , François L.H. Tissot\",\"doi\":\"10.1016/j.epsl.2024.119050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lower-crustal garnet clinopyroxenite (sometimes termed “arclogite”) fractionation in thick-crustal (>35 km) arc settings presents a compelling model to explain Fe-depletion trends, high oxygen fugacity, and evidence of recent delamination observed in many continental arcs. However, the origin of the garnet clinopyroxenites via igneous or metamorphic processes remains unclear. Due to the preferential incorporation of light Fe isotopes in garnet relative to clinopyroxene or amphibole, Fe isotopes are ideally suited for studying the effects of garnet fractionation on magmatic systems. Here, we present whole-rock and mineral Fe isotope data from a suite of lower to mid/upper-crustal Andean xenoliths from Mercaderes, Colombia. This data is combined with petrography, major and trace element mineral and whole-rock chemistry, geothermobarometry, and thermodynamic modeling to explore the xenoliths' petrogenesis and the Northern Andes' crustal structure. Whole-rock samples display a narrow range of Fe isotope compositions (δ<sup>56</sup>Fe = –0.02 to +0.11 ‰), which do not correlate with lithology, chemistry, or pressure-temperature conditions. This result is inconsistent with previous studies predicting the existence of an isotopically light Fe reservoir in the garnet-rich lower Andean crust. Through thermodynamic modeling, we show that the lack of isotopic fractionation in the Mercaderes xenoliths is more consistent with the suite representing a prograde metamorphic sequence, in which amphibole dehydration reactions drive metamorphism of mid/upper-crustal diorite protoliths. While our data do not preclude the presence of garnet clinopyroxenite cumulates at the base of the Andean crust, or that the delamination of such cumulates played an important role in the evolution of the Andes, they do indicate that not all garnet clinopyroxenites are cumulate in origin. Instead, the lower Andean crust represents an amalgamation of igneous and metamorphic rock, with metamorphism of mid-crustal lithologies and partial melting of mafic cumulate roots acting in tandem to drive densification and delamination of the lower crust in a self-feeding mechanism.</div></div>\",\"PeriodicalId\":11481,\"journal\":{\"name\":\"Earth and Planetary Science Letters\",\"volume\":\"648 \",\"pages\":\"Article 119050\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012821X24004825\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24004825","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Garnet clinopyroxenite formation via amphibole-dehydration in continental arcs: Evidence from Fe isotopes
Lower-crustal garnet clinopyroxenite (sometimes termed “arclogite”) fractionation in thick-crustal (>35 km) arc settings presents a compelling model to explain Fe-depletion trends, high oxygen fugacity, and evidence of recent delamination observed in many continental arcs. However, the origin of the garnet clinopyroxenites via igneous or metamorphic processes remains unclear. Due to the preferential incorporation of light Fe isotopes in garnet relative to clinopyroxene or amphibole, Fe isotopes are ideally suited for studying the effects of garnet fractionation on magmatic systems. Here, we present whole-rock and mineral Fe isotope data from a suite of lower to mid/upper-crustal Andean xenoliths from Mercaderes, Colombia. This data is combined with petrography, major and trace element mineral and whole-rock chemistry, geothermobarometry, and thermodynamic modeling to explore the xenoliths' petrogenesis and the Northern Andes' crustal structure. Whole-rock samples display a narrow range of Fe isotope compositions (δ56Fe = –0.02 to +0.11 ‰), which do not correlate with lithology, chemistry, or pressure-temperature conditions. This result is inconsistent with previous studies predicting the existence of an isotopically light Fe reservoir in the garnet-rich lower Andean crust. Through thermodynamic modeling, we show that the lack of isotopic fractionation in the Mercaderes xenoliths is more consistent with the suite representing a prograde metamorphic sequence, in which amphibole dehydration reactions drive metamorphism of mid/upper-crustal diorite protoliths. While our data do not preclude the presence of garnet clinopyroxenite cumulates at the base of the Andean crust, or that the delamination of such cumulates played an important role in the evolution of the Andes, they do indicate that not all garnet clinopyroxenites are cumulate in origin. Instead, the lower Andean crust represents an amalgamation of igneous and metamorphic rock, with metamorphism of mid-crustal lithologies and partial melting of mafic cumulate roots acting in tandem to drive densification and delamination of the lower crust in a self-feeding mechanism.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.