冷渗漏-水合物系统的流体排放控制:墨西哥湾伍尔西丘的四维地震监测

IF 4.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Earth and Planetary Science Letters Pub Date : 2024-10-22 DOI:10.1016/j.epsl.2024.119087
Ferdinando Cilenti , Davide Oppo , Leonardo Macelloni
{"title":"冷渗漏-水合物系统的流体排放控制:墨西哥湾伍尔西丘的四维地震监测","authors":"Ferdinando Cilenti ,&nbsp;Davide Oppo ,&nbsp;Leonardo Macelloni","doi":"10.1016/j.epsl.2024.119087","DOIUrl":null,"url":null,"abstract":"<div><div>Significant increases in methane discharge from gas hydrate systems into the global ocean can influence oceanic carbon dynamics and potentially present significant challenges to ocean biogeochemistry, marine ecosystems, and broader climate. Gas hydrate/cold seep systems are highly dynamic and susceptible to environmental perturbations and processes active in the subsurface. This complexity poses significant challenges in identifying their driving forces and evolution. Through quantitative time-lapse seismic monitoring, we characterized the subsurface fluid dynamics at Woolsey Mound, a gas hydrate/cold seep system in the Gulf of Mexico. Using information from five reflection seismic surveys, we quantified the fluid volumes within the subsurface and reconstructed their migration process from key permeable sedimentary units at different depths up to the seafloor over a time span of 23 years (1991–2014). Our results reveal that fluid discharge is governed by overpressure build-up and subsequent release, enabled by a network of faults and fractures providing connectivity between deep sedimentary units and the seafloor, crossing through the gas hydrate stability zone. Despite gas hydrates reducing the permeability of these faults, overpressure within shallow sedimentary units can induce transient fault permeability and effective fluid migration, thus enhancing fluid discharge at the seafloor. Our analysis identifies the critical role of shallow permeable layers acting as buffers between deep fluid reservoirs and surface discharge points. This buffering mechanism significantly modulates the frequency and intensity of fluid discharge episodes over decadal timescales. Similar processes observed at Woolsey Mound have been hypothesized at cold seep/hydrate systems along active continental margins, suggesting a common model for deep-sourced fluid discharge across environments in different geological and geodynamic contexts. This research advances our understanding of the mechanisms controlling fluid discharge in cold seep/hydrate systems, providing insights into the complex interplay of geological and environmental factors that drive these profoundly dynamic systems.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"648 ","pages":"Article 119087"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controls on fluid discharge at cold seep-hydrate systems: 4D seismic monitoring of Woolsey Mound, Gulf of Mexico\",\"authors\":\"Ferdinando Cilenti ,&nbsp;Davide Oppo ,&nbsp;Leonardo Macelloni\",\"doi\":\"10.1016/j.epsl.2024.119087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Significant increases in methane discharge from gas hydrate systems into the global ocean can influence oceanic carbon dynamics and potentially present significant challenges to ocean biogeochemistry, marine ecosystems, and broader climate. Gas hydrate/cold seep systems are highly dynamic and susceptible to environmental perturbations and processes active in the subsurface. This complexity poses significant challenges in identifying their driving forces and evolution. Through quantitative time-lapse seismic monitoring, we characterized the subsurface fluid dynamics at Woolsey Mound, a gas hydrate/cold seep system in the Gulf of Mexico. Using information from five reflection seismic surveys, we quantified the fluid volumes within the subsurface and reconstructed their migration process from key permeable sedimentary units at different depths up to the seafloor over a time span of 23 years (1991–2014). Our results reveal that fluid discharge is governed by overpressure build-up and subsequent release, enabled by a network of faults and fractures providing connectivity between deep sedimentary units and the seafloor, crossing through the gas hydrate stability zone. Despite gas hydrates reducing the permeability of these faults, overpressure within shallow sedimentary units can induce transient fault permeability and effective fluid migration, thus enhancing fluid discharge at the seafloor. Our analysis identifies the critical role of shallow permeable layers acting as buffers between deep fluid reservoirs and surface discharge points. This buffering mechanism significantly modulates the frequency and intensity of fluid discharge episodes over decadal timescales. Similar processes observed at Woolsey Mound have been hypothesized at cold seep/hydrate systems along active continental margins, suggesting a common model for deep-sourced fluid discharge across environments in different geological and geodynamic contexts. This research advances our understanding of the mechanisms controlling fluid discharge in cold seep/hydrate systems, providing insights into the complex interplay of geological and environmental factors that drive these profoundly dynamic systems.</div></div>\",\"PeriodicalId\":11481,\"journal\":{\"name\":\"Earth and Planetary Science Letters\",\"volume\":\"648 \",\"pages\":\"Article 119087\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012821X24005193\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24005193","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

天然气水合物系统向全球海洋排放的甲烷大幅增加会影响海洋碳动态,并可能对海洋生物地球化学、海洋生态系统和更广泛的气候带来重大挑战。天然气水合物/冷渗漏系统具有高度动态性,易受环境扰动和地下活跃过程的影响。这种复杂性给确定其驱动力和演化过程带来了巨大挑战。通过定量延时地震监测,我们确定了墨西哥湾天然气水合物/冷渗漏系统 Woolsey Mound 的地下流体动力学特征。利用五次反射地震勘探的信息,我们量化了次表层的流体量,并重建了它们在 23 年(1991-2014 年)时间跨度内从不同深度的关键渗透沉积单元向海底的迁移过程。我们的研究结果表明,流体排放受超压积累和随后释放的支配,而断层和裂缝网络则提供了深层沉积单元与海底之间的连接,并穿过天然气水合物稳定区。尽管天然气水合物降低了这些断层的渗透性,但浅层沉积单元内的超压可引起瞬时断层渗透性和有效的流体迁移,从而增强海底的流体排放。我们的分析确定了浅层渗透层作为深层流体储层和地表排泄点之间缓冲的关键作用。这种缓冲机制在十年时间尺度上极大地调节了流体排放事件的频率和强度。在伍尔西丘观察到的类似过程也被假设为活跃大陆边缘冷渗漏/水合物系统的过程,这表明不同地质和地球动力学背景下的深源流体排放有一个共同的模式。这项研究加深了我们对冷渗漏/水合物系统流体排放控制机制的理解,为我们深入了解驱动这些深层动态系统的地质和环境因素的复杂相互作用提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controls on fluid discharge at cold seep-hydrate systems: 4D seismic monitoring of Woolsey Mound, Gulf of Mexico
Significant increases in methane discharge from gas hydrate systems into the global ocean can influence oceanic carbon dynamics and potentially present significant challenges to ocean biogeochemistry, marine ecosystems, and broader climate. Gas hydrate/cold seep systems are highly dynamic and susceptible to environmental perturbations and processes active in the subsurface. This complexity poses significant challenges in identifying their driving forces and evolution. Through quantitative time-lapse seismic monitoring, we characterized the subsurface fluid dynamics at Woolsey Mound, a gas hydrate/cold seep system in the Gulf of Mexico. Using information from five reflection seismic surveys, we quantified the fluid volumes within the subsurface and reconstructed their migration process from key permeable sedimentary units at different depths up to the seafloor over a time span of 23 years (1991–2014). Our results reveal that fluid discharge is governed by overpressure build-up and subsequent release, enabled by a network of faults and fractures providing connectivity between deep sedimentary units and the seafloor, crossing through the gas hydrate stability zone. Despite gas hydrates reducing the permeability of these faults, overpressure within shallow sedimentary units can induce transient fault permeability and effective fluid migration, thus enhancing fluid discharge at the seafloor. Our analysis identifies the critical role of shallow permeable layers acting as buffers between deep fluid reservoirs and surface discharge points. This buffering mechanism significantly modulates the frequency and intensity of fluid discharge episodes over decadal timescales. Similar processes observed at Woolsey Mound have been hypothesized at cold seep/hydrate systems along active continental margins, suggesting a common model for deep-sourced fluid discharge across environments in different geological and geodynamic contexts. This research advances our understanding of the mechanisms controlling fluid discharge in cold seep/hydrate systems, providing insights into the complex interplay of geological and environmental factors that drive these profoundly dynamic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Planetary Science Letters
Earth and Planetary Science Letters 地学-地球化学与地球物理
CiteScore
10.30
自引率
5.70%
发文量
475
审稿时长
2.8 months
期刊介绍: Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.
期刊最新文献
Lower mantle water distribution from ab initio proton diffusivity in bridgmanite Local sedimentary effects shaped key sulfur records after the Great Oxidation Event Mechanisms and timing of carbonaceous chondrite delivery to the Earth Weak paleointensities from 1.6 Ga Greenland dykes: Further evidence for a billion-year period of paleomagnetic dipole low during the Paleoproterozoic Magnetotelluric image of the Patagonian slab window: Constraints on upper mantle physical properties and sources of intraplate magmatism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1