在 4A 沸石/聚醚砜混合基质膜中原位生长三维铜基催化剂,用于苯酚的芬顿降解

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-10-18 DOI:10.1016/j.memsci.2024.123407
Jing Lv , Han Zhang , Hui Ye, Xiaojian Fu, Shurui Han, Guodong Yang, Jinli Zhao, Lizhi Zhao, Qingping Xin, Ligang Lin, Xiaoli Ding, Hong Li, Yuzhong Zhang
{"title":"在 4A 沸石/聚醚砜混合基质膜中原位生长三维铜基催化剂,用于苯酚的芬顿降解","authors":"Jing Lv ,&nbsp;Han Zhang ,&nbsp;Hui Ye,&nbsp;Xiaojian Fu,&nbsp;Shurui Han,&nbsp;Guodong Yang,&nbsp;Jinli Zhao,&nbsp;Lizhi Zhao,&nbsp;Qingping Xin,&nbsp;Ligang Lin,&nbsp;Xiaoli Ding,&nbsp;Hong Li,&nbsp;Yuzhong Zhang","doi":"10.1016/j.memsci.2024.123407","DOIUrl":null,"url":null,"abstract":"<div><div>Fenton-like membrane reactors applied to water purification provide a broad solution to address the challenges of catalyst recovery, low reaction efficiency, and high mass transfer resistance in heterogeneous batch reactions. Zeolites as nanocatalyst carriers are promising candidates for advanced purification membranes. Herein, we report a composite catalytic membrane (4A-Cu/PES) for Fenton-like degradation of phenol wastewater, fabricated by in-situ growth of copper nanoflowers on a 4A zeolite/polyethersulfone (PES) mixed matrix membrane, forming a three-dimensional core-shell nanostructured catalyst. Compared with the conventional method, the in-situ growth prevents the copper catalyst from being covered by the polymer and significantly increases the copper loading (3.97 %), thus ensuring efficient catalytic reactions within the membrane pores. Meanwhile, the porous structure of zeolite provides a large specific surface area, facilitating uniform dispersion of copper ions during <em>in situ</em> growth of the catalyst and providing abundant active sites. The membrane exhibited a phenol degradation rate of 93.9 % at pH 6, significantly broadening the pH applicability of the Fenton reaction. Hydroxyl radicals (·OH) were identified as the primary active species in the 4A-Cu/PES-H<sub>2</sub>O<sub>2</sub> system. Moreover, the membrane retained high catalytic activity after five cycles, demonstrating excellent stability. This work provides important insights for designing efficient and stable Fenton-like zeolite catalytic membranes.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"714 ","pages":"Article 123407"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ growth of three-dimensional copper-based catalyst in 4A zeolite/PES mixed matrix membrane for Fenton-like degradation of phenol\",\"authors\":\"Jing Lv ,&nbsp;Han Zhang ,&nbsp;Hui Ye,&nbsp;Xiaojian Fu,&nbsp;Shurui Han,&nbsp;Guodong Yang,&nbsp;Jinli Zhao,&nbsp;Lizhi Zhao,&nbsp;Qingping Xin,&nbsp;Ligang Lin,&nbsp;Xiaoli Ding,&nbsp;Hong Li,&nbsp;Yuzhong Zhang\",\"doi\":\"10.1016/j.memsci.2024.123407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fenton-like membrane reactors applied to water purification provide a broad solution to address the challenges of catalyst recovery, low reaction efficiency, and high mass transfer resistance in heterogeneous batch reactions. Zeolites as nanocatalyst carriers are promising candidates for advanced purification membranes. Herein, we report a composite catalytic membrane (4A-Cu/PES) for Fenton-like degradation of phenol wastewater, fabricated by in-situ growth of copper nanoflowers on a 4A zeolite/polyethersulfone (PES) mixed matrix membrane, forming a three-dimensional core-shell nanostructured catalyst. Compared with the conventional method, the in-situ growth prevents the copper catalyst from being covered by the polymer and significantly increases the copper loading (3.97 %), thus ensuring efficient catalytic reactions within the membrane pores. Meanwhile, the porous structure of zeolite provides a large specific surface area, facilitating uniform dispersion of copper ions during <em>in situ</em> growth of the catalyst and providing abundant active sites. The membrane exhibited a phenol degradation rate of 93.9 % at pH 6, significantly broadening the pH applicability of the Fenton reaction. Hydroxyl radicals (·OH) were identified as the primary active species in the 4A-Cu/PES-H<sub>2</sub>O<sub>2</sub> system. Moreover, the membrane retained high catalytic activity after five cycles, demonstrating excellent stability. This work provides important insights for designing efficient and stable Fenton-like zeolite catalytic membranes.</div></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":\"714 \",\"pages\":\"Article 123407\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738824010019\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010019","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

应用于水净化的类芬顿膜反应器为解决异相批量反应中的催化剂回收、低反应效率和高传质阻力等难题提供了广泛的解决方案。作为纳米催化剂载体的沸石是先进净化膜的理想候选材料。在此,我们报告了一种用于苯酚废水 Fenton 类降解的复合催化膜(4A-Cu/PES),它是通过在 4A 沸石/聚醚砜(PES)混合基质膜上原位生长铜纳米流,形成三维核壳纳米结构催化剂而制成的。与传统方法相比,原位生长可防止铜催化剂被聚合物覆盖,并显著提高铜负载量(3.97%),从而确保膜孔内的高效催化反应。同时,沸石的多孔结构提供了较大的比表面积,有利于铜离子在催化剂原位生长过程中均匀分散,并提供了丰富的活性位点。该膜在 pH 值为 6 时的苯酚降解率为 93.9%,大大拓宽了芬顿反应的适用 pH 值。羟基自由基(-OH)被确定为 4A-Cu/PES-H2O2 系统中的主要活性物种。此外,该膜在五个循环后仍能保持较高的催化活性,显示出卓越的稳定性。这项研究为设计高效稳定的类芬顿沸石催化膜提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-situ growth of three-dimensional copper-based catalyst in 4A zeolite/PES mixed matrix membrane for Fenton-like degradation of phenol
Fenton-like membrane reactors applied to water purification provide a broad solution to address the challenges of catalyst recovery, low reaction efficiency, and high mass transfer resistance in heterogeneous batch reactions. Zeolites as nanocatalyst carriers are promising candidates for advanced purification membranes. Herein, we report a composite catalytic membrane (4A-Cu/PES) for Fenton-like degradation of phenol wastewater, fabricated by in-situ growth of copper nanoflowers on a 4A zeolite/polyethersulfone (PES) mixed matrix membrane, forming a three-dimensional core-shell nanostructured catalyst. Compared with the conventional method, the in-situ growth prevents the copper catalyst from being covered by the polymer and significantly increases the copper loading (3.97 %), thus ensuring efficient catalytic reactions within the membrane pores. Meanwhile, the porous structure of zeolite provides a large specific surface area, facilitating uniform dispersion of copper ions during in situ growth of the catalyst and providing abundant active sites. The membrane exhibited a phenol degradation rate of 93.9 % at pH 6, significantly broadening the pH applicability of the Fenton reaction. Hydroxyl radicals (·OH) were identified as the primary active species in the 4A-Cu/PES-H2O2 system. Moreover, the membrane retained high catalytic activity after five cycles, demonstrating excellent stability. This work provides important insights for designing efficient and stable Fenton-like zeolite catalytic membranes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Stringing covalent organic framework particles for preparing highly loaded mixed-matrix membranes for efficient and precise dye separation High rejection seawater reverse osmosis TFC membranes with a polyamide-polysulfonamide interpenetrated functional layer Lattice-defective metal-organic framework membranes from filling mesoporous colloidal networks for monovalent ion separation Methanol tolerable ultrathin proton exchange membrane fabricated via in-situ ionic self-crosslinking strategy for high-performance DMFCs Non-metallic cation and anion co-doped perovskite oxide ceramic membranes for high-efficiency oxygen permeation at low temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1