Ning Xu , Yubo Huang , Xuming Liu , Dongpo Xuan , Huaile Lu , Shilei Li , Yan-dong Wang , Junsheng Wang
{"title":"在新型铸造铝钴铬镍高熵合金中实现出色的强度-电导率组合","authors":"Ning Xu , Yubo Huang , Xuming Liu , Dongpo Xuan , Huaile Lu , Shilei Li , Yan-dong Wang , Junsheng Wang","doi":"10.1016/j.msea.2024.147436","DOIUrl":null,"url":null,"abstract":"<div><div>We prepared a novel cast high-entropy alloy (HEA) that comprises a dual-phase microstructure with L1<sub>2</sub> and B2 phases. Our designed HEA achieved a remarkable strength–ductility balance (tensile strength of ∼1025 MPa and uniform elongation of ∼30 %, which well outperforms many as-cast HEAs including arc-melting and directly cast HEAs.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"918 ","pages":"Article 147436"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving a remarkable strength–ductility combination in a novel casting AlCoCrNi high entropy alloy\",\"authors\":\"Ning Xu , Yubo Huang , Xuming Liu , Dongpo Xuan , Huaile Lu , Shilei Li , Yan-dong Wang , Junsheng Wang\",\"doi\":\"10.1016/j.msea.2024.147436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prepared a novel cast high-entropy alloy (HEA) that comprises a dual-phase microstructure with L1<sub>2</sub> and B2 phases. Our designed HEA achieved a remarkable strength–ductility balance (tensile strength of ∼1025 MPa and uniform elongation of ∼30 %, which well outperforms many as-cast HEAs including arc-melting and directly cast HEAs.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"918 \",\"pages\":\"Article 147436\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509324013674\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509324013674","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Achieving a remarkable strength–ductility combination in a novel casting AlCoCrNi high entropy alloy
We prepared a novel cast high-entropy alloy (HEA) that comprises a dual-phase microstructure with L12 and B2 phases. Our designed HEA achieved a remarkable strength–ductility balance (tensile strength of ∼1025 MPa and uniform elongation of ∼30 %, which well outperforms many as-cast HEAs including arc-melting and directly cast HEAs.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.