Azhar Ali Haidry , Muhammad Fanan Khan , Adil Raza , Talha Amin , Muhammad Kashif , Kareem Yusuf
{"title":"用于挥发性有机化合物传感的银和铜修饰石墨氮化碳的简易合成","authors":"Azhar Ali Haidry , Muhammad Fanan Khan , Adil Raza , Talha Amin , Muhammad Kashif , Kareem Yusuf","doi":"10.1016/j.diamond.2024.111671","DOIUrl":null,"url":null,"abstract":"<div><div>Volatile organic compounds (VOCs) pose significant health risks when inhaled or ingested in large quantities. Metal oxide-based solid-state gas sensors are commonly utilized for VOCs detection, including methanol, however their high operating temperature and selectivity are both biggest challenges. In this context, graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) has emerged as a promising alternative for VOCs sensing due to its superior sensing properties. In this work, Cu and Ag doped g-C<sub>3</sub>N<sub>4</sub> was synthesized via the polycondensation method for VOCs sensing applications. All the samples showed a selective response to methanol at room temperature. Notably, the Ag/g-C<sub>3</sub>N<sub>4</sub> sensor exhibited a significantly enhanced response (~27.5) compared to both undoped g-C<sub>3</sub>N<sub>4</sub> (~3.58) and Cu/g-C<sub>3</sub>N<sub>4</sub> (~9.82) sensors towards 200 ppm methanol. The Ag/C<sub>3</sub>N<sub>4</sub> based sensor showed rapid response (21 s) and recovery (17 s) times, along with excellent short-term and long-term stability. It was found that Ag/C<sub>3</sub>N<sub>4</sub> sensor exhibited a good response to humidity levels ranging from 9 % to 93 % RH, without any significant variation observed when deposited on the ceramic and flexible polyimide substrates. Further, considering its practical applicability, the Ag/C<sub>3</sub>N<sub>4</sub> sensor showed successful detection of alcohol in human breath, highlighting its potential for real-world applications.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111671"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis of silver and copper modified graphitic carbon nitride for volatile organic compounds sensing\",\"authors\":\"Azhar Ali Haidry , Muhammad Fanan Khan , Adil Raza , Talha Amin , Muhammad Kashif , Kareem Yusuf\",\"doi\":\"10.1016/j.diamond.2024.111671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Volatile organic compounds (VOCs) pose significant health risks when inhaled or ingested in large quantities. Metal oxide-based solid-state gas sensors are commonly utilized for VOCs detection, including methanol, however their high operating temperature and selectivity are both biggest challenges. In this context, graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) has emerged as a promising alternative for VOCs sensing due to its superior sensing properties. In this work, Cu and Ag doped g-C<sub>3</sub>N<sub>4</sub> was synthesized via the polycondensation method for VOCs sensing applications. All the samples showed a selective response to methanol at room temperature. Notably, the Ag/g-C<sub>3</sub>N<sub>4</sub> sensor exhibited a significantly enhanced response (~27.5) compared to both undoped g-C<sub>3</sub>N<sub>4</sub> (~3.58) and Cu/g-C<sub>3</sub>N<sub>4</sub> (~9.82) sensors towards 200 ppm methanol. The Ag/C<sub>3</sub>N<sub>4</sub> based sensor showed rapid response (21 s) and recovery (17 s) times, along with excellent short-term and long-term stability. It was found that Ag/C<sub>3</sub>N<sub>4</sub> sensor exhibited a good response to humidity levels ranging from 9 % to 93 % RH, without any significant variation observed when deposited on the ceramic and flexible polyimide substrates. Further, considering its practical applicability, the Ag/C<sub>3</sub>N<sub>4</sub> sensor showed successful detection of alcohol in human breath, highlighting its potential for real-world applications.</div></div>\",\"PeriodicalId\":11266,\"journal\":{\"name\":\"Diamond and Related Materials\",\"volume\":\"150 \",\"pages\":\"Article 111671\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diamond and Related Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925963524008847\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524008847","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Facile synthesis of silver and copper modified graphitic carbon nitride for volatile organic compounds sensing
Volatile organic compounds (VOCs) pose significant health risks when inhaled or ingested in large quantities. Metal oxide-based solid-state gas sensors are commonly utilized for VOCs detection, including methanol, however their high operating temperature and selectivity are both biggest challenges. In this context, graphitic carbon nitride (g-C3N4) has emerged as a promising alternative for VOCs sensing due to its superior sensing properties. In this work, Cu and Ag doped g-C3N4 was synthesized via the polycondensation method for VOCs sensing applications. All the samples showed a selective response to methanol at room temperature. Notably, the Ag/g-C3N4 sensor exhibited a significantly enhanced response (~27.5) compared to both undoped g-C3N4 (~3.58) and Cu/g-C3N4 (~9.82) sensors towards 200 ppm methanol. The Ag/C3N4 based sensor showed rapid response (21 s) and recovery (17 s) times, along with excellent short-term and long-term stability. It was found that Ag/C3N4 sensor exhibited a good response to humidity levels ranging from 9 % to 93 % RH, without any significant variation observed when deposited on the ceramic and flexible polyimide substrates. Further, considering its practical applicability, the Ag/C3N4 sensor showed successful detection of alcohol in human breath, highlighting its potential for real-world applications.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.