利用旋转系绳系统进行空间站观测的绕飞飞行任务分析

IF 3.1 2区 物理与天体物理 Q1 ENGINEERING, AEROSPACE Acta Astronautica Pub Date : 2024-10-18 DOI:10.1016/j.actaastro.2024.10.032
Hang Yang , Changqing Wang , Hongshi Lu , Aijun Li
{"title":"利用旋转系绳系统进行空间站观测的绕飞飞行任务分析","authors":"Hang Yang ,&nbsp;Changqing Wang ,&nbsp;Hongshi Lu ,&nbsp;Aijun Li","doi":"10.1016/j.actaastro.2024.10.032","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the mission scenarios of using spinning tether system to conduct space stations fly-around mission and validates its feasibility. The main challenge of fly-around mission lies in the difficulty of balancing low fuel consumption and long-term fly-around observation. To deal with this problem, a novel spinning tether system is proposed. Firstly, the fly-around process with spinning tether system is introduced, and the tether system is modeled based on Newton-Euler method with a novel description of spinning motion. Secondly, Given the unique structural limitations of space stations, two fly-around schemes and referenced fly-around trajectories are detailed. Thirdly, a backstepping controller is proposed for tracking the reference motion of fly-around satellites, and the fuel consumption among different fly-around schemes is compared and analyzed. In the end, numerical results validate that under the proposed control strategy, the spinning tether system can maintain a stable fly-around configuration in both the planar and vertical plane, the symmetrical formation configuration prevents the central space station from being affected by the motion of fly-around satellites. Moreover, energy consumption analysis indicates that tethered system can save 62.8 % of impulse compared to traditional schemes when flying in the planar plane, making it the most energy-efficient option.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 137-146"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of fly-around mission with spinning tether system for space station observation\",\"authors\":\"Hang Yang ,&nbsp;Changqing Wang ,&nbsp;Hongshi Lu ,&nbsp;Aijun Li\",\"doi\":\"10.1016/j.actaastro.2024.10.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents the mission scenarios of using spinning tether system to conduct space stations fly-around mission and validates its feasibility. The main challenge of fly-around mission lies in the difficulty of balancing low fuel consumption and long-term fly-around observation. To deal with this problem, a novel spinning tether system is proposed. Firstly, the fly-around process with spinning tether system is introduced, and the tether system is modeled based on Newton-Euler method with a novel description of spinning motion. Secondly, Given the unique structural limitations of space stations, two fly-around schemes and referenced fly-around trajectories are detailed. Thirdly, a backstepping controller is proposed for tracking the reference motion of fly-around satellites, and the fuel consumption among different fly-around schemes is compared and analyzed. In the end, numerical results validate that under the proposed control strategy, the spinning tether system can maintain a stable fly-around configuration in both the planar and vertical plane, the symmetrical formation configuration prevents the central space station from being affected by the motion of fly-around satellites. Moreover, energy consumption analysis indicates that tethered system can save 62.8 % of impulse compared to traditional schemes when flying in the planar plane, making it the most energy-efficient option.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"226 \",\"pages\":\"Pages 137-146\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576524006064\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524006064","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了利用旋转系绳系统执行空间站绕飞任务的飞行方案,并验证了其可行性。绕飞任务的主要挑战在于难以兼顾低燃料消耗和长期绕飞观测。为解决这一问题,提出了一种新型旋转系绳系统。首先,介绍了旋转系链系统的绕飞过程,并基于牛顿-欧拉法建立了系链系统模型,对旋转运动进行了新颖的描述。其次,考虑到空间站独特的结构限制,详细介绍了两种绕飞方案和参考绕飞轨迹。第三,提出了一种用于跟踪绕飞卫星参考运动的反步进控制器,并对不同绕飞方案的燃料消耗进行了比较和分析。最后,数值结果验证了在所提出的控制策略下,旋转系绳系统可以在平面和垂直面上保持稳定的绕飞配置,对称的编队配置可以防止中心空间站受到绕飞卫星运动的影响。此外,能耗分析表明,与传统方案相比,系留系统在平面飞行时可节省 62.8%的冲量,是最节能的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of fly-around mission with spinning tether system for space station observation
This paper presents the mission scenarios of using spinning tether system to conduct space stations fly-around mission and validates its feasibility. The main challenge of fly-around mission lies in the difficulty of balancing low fuel consumption and long-term fly-around observation. To deal with this problem, a novel spinning tether system is proposed. Firstly, the fly-around process with spinning tether system is introduced, and the tether system is modeled based on Newton-Euler method with a novel description of spinning motion. Secondly, Given the unique structural limitations of space stations, two fly-around schemes and referenced fly-around trajectories are detailed. Thirdly, a backstepping controller is proposed for tracking the reference motion of fly-around satellites, and the fuel consumption among different fly-around schemes is compared and analyzed. In the end, numerical results validate that under the proposed control strategy, the spinning tether system can maintain a stable fly-around configuration in both the planar and vertical plane, the symmetrical formation configuration prevents the central space station from being affected by the motion of fly-around satellites. Moreover, energy consumption analysis indicates that tethered system can save 62.8 % of impulse compared to traditional schemes when flying in the planar plane, making it the most energy-efficient option.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Astronautica
Acta Astronautica 工程技术-工程:宇航
CiteScore
7.20
自引率
22.90%
发文量
599
审稿时长
53 days
期刊介绍: Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to: The peaceful scientific exploration of space, Its exploitation for human welfare and progress, Conception, design, development and operation of space-borne and Earth-based systems, In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.
期刊最新文献
Improving landing stability and terrain adaptability in Lunar exploration with biomimetic lander design and control Vision-based navigation and obstacle detection flight results in SLIM lunar landing On the two approaches for the combustion instability predictions in a long-flame combustor Investigation of discharge voltage characteristics of a lanthanum hexaboride heaterless hollow cathode Effect of particle size on gasification of solid fuel in a low-temperature gas generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1