Nicholas Derimow , Jake T. Benzing , Howie Joress , Austin McDannald , Ping Lu , Frank W. DelRio , Newell Moser , Matthew J. Connolly , Alec I. Saville , Orion L. Kafka , Chad Beamer , Ryan Fishel , Suchismita Sarker , Chris Hadley , Nik Hrabe
{"title":"不同温度和冷却速率的 HIP 处理后激光粉末床熔融 Ti-6Al-4V 的微观结构和力学性能","authors":"Nicholas Derimow , Jake T. Benzing , Howie Joress , Austin McDannald , Ping Lu , Frank W. DelRio , Newell Moser , Matthew J. Connolly , Alec I. Saville , Orion L. Kafka , Chad Beamer , Ryan Fishel , Suchismita Sarker , Chris Hadley , Nik Hrabe","doi":"10.1016/j.matdes.2024.113388","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigated non-standard HIP cycles for PBF-L Ti-6Al-4V and characterized microstructure and tensile properties to compare between material that originated from the same build. For 920<!--> <!-->°C, faster cooling rates (100<!--> <!-->°C/min, 2000<!--> <!-->°C/min) were found to promote bi-lamellar α microstructure, while the 2000<!--> <!-->°C/min cooling rate improved the strength. For HIP with lower temperature (800<!--> <!-->°C, 200 MPa), coarsening was minimized resulting in strength improvement. The slow cooling rate (12<!--> <!-->°C/min) showed the highest strength as faster rates increased the amount of orthorhombic martensite (<span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>″</mo></mrow></msup></math></span>). For HIP with higher temperature (1050<!--> <!-->°C), the as-built crystallographic texture was reduced and equiaxed prior-β grain morphology resulted, leading to more isotropic tensile properties. However, the cooling rate (2000<!--> <!-->°C/min) was not enough to prevent formation of grain boundary α, which reduced strength and elongation. Machine learning was carried out on the dataset via Principal Component Analysis (PCA) to reduce the dimensionality of the parameters and microstructural features.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"247 ","pages":"Article 113388"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and mechanical properties of laser powder bed fusion Ti-6Al-4V after HIP treatments with varied temperatures and cooling rates\",\"authors\":\"Nicholas Derimow , Jake T. Benzing , Howie Joress , Austin McDannald , Ping Lu , Frank W. DelRio , Newell Moser , Matthew J. Connolly , Alec I. Saville , Orion L. Kafka , Chad Beamer , Ryan Fishel , Suchismita Sarker , Chris Hadley , Nik Hrabe\",\"doi\":\"10.1016/j.matdes.2024.113388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work investigated non-standard HIP cycles for PBF-L Ti-6Al-4V and characterized microstructure and tensile properties to compare between material that originated from the same build. For 920<!--> <!-->°C, faster cooling rates (100<!--> <!-->°C/min, 2000<!--> <!-->°C/min) were found to promote bi-lamellar α microstructure, while the 2000<!--> <!-->°C/min cooling rate improved the strength. For HIP with lower temperature (800<!--> <!-->°C, 200 MPa), coarsening was minimized resulting in strength improvement. The slow cooling rate (12<!--> <!-->°C/min) showed the highest strength as faster rates increased the amount of orthorhombic martensite (<span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>″</mo></mrow></msup></math></span>). For HIP with higher temperature (1050<!--> <!-->°C), the as-built crystallographic texture was reduced and equiaxed prior-β grain morphology resulted, leading to more isotropic tensile properties. However, the cooling rate (2000<!--> <!-->°C/min) was not enough to prevent formation of grain boundary α, which reduced strength and elongation. Machine learning was carried out on the dataset via Principal Component Analysis (PCA) to reduce the dimensionality of the parameters and microstructural features.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"247 \",\"pages\":\"Article 113388\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524007639\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007639","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Microstructure and mechanical properties of laser powder bed fusion Ti-6Al-4V after HIP treatments with varied temperatures and cooling rates
This work investigated non-standard HIP cycles for PBF-L Ti-6Al-4V and characterized microstructure and tensile properties to compare between material that originated from the same build. For 920 °C, faster cooling rates (100 °C/min, 2000 °C/min) were found to promote bi-lamellar α microstructure, while the 2000 °C/min cooling rate improved the strength. For HIP with lower temperature (800 °C, 200 MPa), coarsening was minimized resulting in strength improvement. The slow cooling rate (12 °C/min) showed the highest strength as faster rates increased the amount of orthorhombic martensite (). For HIP with higher temperature (1050 °C), the as-built crystallographic texture was reduced and equiaxed prior-β grain morphology resulted, leading to more isotropic tensile properties. However, the cooling rate (2000 °C/min) was not enough to prevent formation of grain boundary α, which reduced strength and elongation. Machine learning was carried out on the dataset via Principal Component Analysis (PCA) to reduce the dimensionality of the parameters and microstructural features.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.