基于单一参数学习方法的多机器人系统自触发共识弹性控制,对抗传感器欺骗攻击

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2024-10-25 DOI:10.1016/j.chaos.2024.115649
Junwen Xiao, Yongchao Liu
{"title":"基于单一参数学习方法的多机器人系统自触发共识弹性控制,对抗传感器欺骗攻击","authors":"Junwen Xiao,&nbsp;Yongchao Liu","doi":"10.1016/j.chaos.2024.115649","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a self-triggered consensus resilient control method for nonlinear multi-agent systems (MASs) under sensor deception attacks. A single parameter learning method is integrated into backstepping technique to simplify design procedure. The neural networks are utilized to compensate for unknown dynamics of the MASs. Moreover, a self-triggered mechanism is presented for MASs to refrain from continuously monitoring triggering conditions and conserve communication resources. The designed controller can resist sensor deception attacks and guarantee that all signals of the MASs are uniformly bounded. An expository simulation example reveals the virtue of the presented method.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-triggered consensus resilient control for multi-agent systems against sensor deception attacks based on a single parameter learning method\",\"authors\":\"Junwen Xiao,&nbsp;Yongchao Liu\",\"doi\":\"10.1016/j.chaos.2024.115649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a self-triggered consensus resilient control method for nonlinear multi-agent systems (MASs) under sensor deception attacks. A single parameter learning method is integrated into backstepping technique to simplify design procedure. The neural networks are utilized to compensate for unknown dynamics of the MASs. Moreover, a self-triggered mechanism is presented for MASs to refrain from continuously monitoring triggering conditions and conserve communication resources. The designed controller can resist sensor deception attacks and guarantee that all signals of the MASs are uniformly bounded. An expository simulation example reveals the virtue of the presented method.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012013\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012013","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对传感器欺骗攻击下的非线性多代理系统(MAS)提出了一种自触发共识弹性控制方法。为了简化设计程序,本文将单参数学习方法集成到反步进技术中。利用神经网络对 MAS 的未知动态进行补偿。此外,还为 MAS 提出了一种自触发机制,以避免持续监控触发条件并节省通信资源。所设计的控制器可以抵御传感器欺骗攻击,并保证 MAS 的所有信号都是均匀有界的。一个说明性仿真实例揭示了所提出方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-triggered consensus resilient control for multi-agent systems against sensor deception attacks based on a single parameter learning method
This paper presents a self-triggered consensus resilient control method for nonlinear multi-agent systems (MASs) under sensor deception attacks. A single parameter learning method is integrated into backstepping technique to simplify design procedure. The neural networks are utilized to compensate for unknown dynamics of the MASs. Moreover, a self-triggered mechanism is presented for MASs to refrain from continuously monitoring triggering conditions and conserve communication resources. The designed controller can resist sensor deception attacks and guarantee that all signals of the MASs are uniformly bounded. An expository simulation example reveals the virtue of the presented method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Emergence of relaxation beat-waves in genuinely nonlinear Klein-Gordon chain with bi-harmonic parametric excitation A special memristive diode-bridge-based hyperchaotic hyperjerk autonomous circuit with three positive Lyapunov exponents Impulsive quasi-containment control in stochastic heterogeneous multiplex networks A novel spatio-temporal prediction model of epidemic spread integrating cellular automata with agent-based modeling Prescribed-time multi-coalition Nash equilibrium seeking by event-triggered communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1