一种非梭子型-3 神经模糊定时同步法

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2024-10-28 DOI:10.1016/j.chaos.2024.115671
Hamid Taghavifar , Ardashir Mohammadzadeh , Chunwei Zhang
{"title":"一种非梭子型-3 神经模糊定时同步法","authors":"Hamid Taghavifar ,&nbsp;Ardashir Mohammadzadeh ,&nbsp;Chunwei Zhang","doi":"10.1016/j.chaos.2024.115671","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a synchronizing approach to chaotic systems with unknown nonlinear dynamics using a Gaussian non-singleton type-3 (NT3) fuzzy logic system (T3-FLS). The proposed method effectively addresses the challenges of parameter uncertainties and external disturbances by utilizing higher-order fuzzy approximations, thereby enhancing robustness and adaptability. By incorporating a projection operator, the control scenario ensures stability. The design includes a fixed-time adaptive synchronization technique that guarantees convergence in a predetermined time frame, independent of the initial values. The presented theoretical analysis proves the superiority of the designed synchronization approach, while simulations demonstrate significant improvements in synchronization performance and resilience against uncertainties. Specifically, the proposed method achieves root mean square errors of 0.1990 and 0.2754 for the tracking errors, representing improvements over 30% compared to the other benchmarking methods. These outcomes demonstrate the robustness of our proposed controller in handling chaotic systems under various operating conditions.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A non-singleton type-3 neuro-fuzzy fixed-time synchronizing method\",\"authors\":\"Hamid Taghavifar ,&nbsp;Ardashir Mohammadzadeh ,&nbsp;Chunwei Zhang\",\"doi\":\"10.1016/j.chaos.2024.115671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a synchronizing approach to chaotic systems with unknown nonlinear dynamics using a Gaussian non-singleton type-3 (NT3) fuzzy logic system (T3-FLS). The proposed method effectively addresses the challenges of parameter uncertainties and external disturbances by utilizing higher-order fuzzy approximations, thereby enhancing robustness and adaptability. By incorporating a projection operator, the control scenario ensures stability. The design includes a fixed-time adaptive synchronization technique that guarantees convergence in a predetermined time frame, independent of the initial values. The presented theoretical analysis proves the superiority of the designed synchronization approach, while simulations demonstrate significant improvements in synchronization performance and resilience against uncertainties. Specifically, the proposed method achieves root mean square errors of 0.1990 and 0.2754 for the tracking errors, representing improvements over 30% compared to the other benchmarking methods. These outcomes demonstrate the robustness of our proposed controller in handling chaotic systems under various operating conditions.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012232\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012232","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用高斯非鞘锥型-3(NT3)模糊逻辑系统(T3-FLS)对具有未知非线性动力学的混沌系统进行同步的方法。所提出的方法通过利用高阶模糊近似,有效地解决了参数不确定性和外部干扰的难题,从而增强了鲁棒性和适应性。通过加入投影算子,控制方案确保了稳定性。该设计包括一种固定时间自适应同步技术,可确保在预定时间框架内收敛,与初始值无关。所提出的理论分析证明了所设计的同步方法的优越性,而模拟则证明了同步性能和对不确定性的适应能力的显著提高。具体来说,与其他基准方法相比,拟议方法的跟踪误差均方根误差分别为 0.1990 和 0.2754,改进幅度超过 30%。这些结果证明了我们提出的控制器在各种运行条件下处理混沌系统的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A non-singleton type-3 neuro-fuzzy fixed-time synchronizing method
This paper presents a synchronizing approach to chaotic systems with unknown nonlinear dynamics using a Gaussian non-singleton type-3 (NT3) fuzzy logic system (T3-FLS). The proposed method effectively addresses the challenges of parameter uncertainties and external disturbances by utilizing higher-order fuzzy approximations, thereby enhancing robustness and adaptability. By incorporating a projection operator, the control scenario ensures stability. The design includes a fixed-time adaptive synchronization technique that guarantees convergence in a predetermined time frame, independent of the initial values. The presented theoretical analysis proves the superiority of the designed synchronization approach, while simulations demonstrate significant improvements in synchronization performance and resilience against uncertainties. Specifically, the proposed method achieves root mean square errors of 0.1990 and 0.2754 for the tracking errors, representing improvements over 30% compared to the other benchmarking methods. These outcomes demonstrate the robustness of our proposed controller in handling chaotic systems under various operating conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Emergence of relaxation beat-waves in genuinely nonlinear Klein-Gordon chain with bi-harmonic parametric excitation A special memristive diode-bridge-based hyperchaotic hyperjerk autonomous circuit with three positive Lyapunov exponents Impulsive quasi-containment control in stochastic heterogeneous multiplex networks A novel spatio-temporal prediction model of epidemic spread integrating cellular automata with agent-based modeling Prescribed-time multi-coalition Nash equilibrium seeking by event-triggered communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1