{"title":"多壁碳纳米管和 Mn0.4Cu0.6Fe2O4 在高效脱汞和抗硫方面的协同效应","authors":"","doi":"10.1016/j.joei.2024.101863","DOIUrl":null,"url":null,"abstract":"<div><div>Although ferrite-based adsorbents are the potential mercury removal materials for the high thermal stability, they usually suffer from a low efficiency in flue gas environment, especially under SO<sub>2</sub> condition. In the present paper, the multi-walled carbon nanotubes (MWCNTs) are utilized to improve the adsorption capacity of the Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> adsorbents as well as inhibit the influence of flue gas composition. The influences of temperature, adsorbent type and the flue gas composition on Hg<sup>0</sup> removal efficiency are evaluated by experiments. The physical adsorption property of MWCNTs provides a platform for Hg<sup>0</sup> oxidation by Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub>. The synergistic effect between MWCNTs and Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> enhances the mercury removal efficiency as well we the sulfur resistance. The results find that the adsorbent of Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> containing 14 % MWCNTs has a high mercury removal efficiency of 95.6 % at 120 °C even under 1000 ppm SO<sub>2</sub> concentration. The kinetic behaviors of adsorbent adsorption are analyzed by theoretical models. The mechanisms of porous carbon-containing modifier to improve the mercury removal performance of Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> are explored carefully. The present ferrite-based adsorbent exhibits promising prospects for the practical industrial applications of the low temperature mercury removal from coal-fired flue gas.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effects of multi-walled carbon nanotubes and Mn0.4Cu0.6Fe2O4 on mercury removal with high efficiency and sulfur resistance\",\"authors\":\"\",\"doi\":\"10.1016/j.joei.2024.101863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although ferrite-based adsorbents are the potential mercury removal materials for the high thermal stability, they usually suffer from a low efficiency in flue gas environment, especially under SO<sub>2</sub> condition. In the present paper, the multi-walled carbon nanotubes (MWCNTs) are utilized to improve the adsorption capacity of the Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> adsorbents as well as inhibit the influence of flue gas composition. The influences of temperature, adsorbent type and the flue gas composition on Hg<sup>0</sup> removal efficiency are evaluated by experiments. The physical adsorption property of MWCNTs provides a platform for Hg<sup>0</sup> oxidation by Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub>. The synergistic effect between MWCNTs and Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> enhances the mercury removal efficiency as well we the sulfur resistance. The results find that the adsorbent of Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> containing 14 % MWCNTs has a high mercury removal efficiency of 95.6 % at 120 °C even under 1000 ppm SO<sub>2</sub> concentration. The kinetic behaviors of adsorbent adsorption are analyzed by theoretical models. The mechanisms of porous carbon-containing modifier to improve the mercury removal performance of Mn<sub>0.4</sub>Cu<sub>0.6</sub>Fe<sub>2</sub>O<sub>4</sub> are explored carefully. The present ferrite-based adsorbent exhibits promising prospects for the practical industrial applications of the low temperature mercury removal from coal-fired flue gas.</div></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124003416\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003416","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Synergistic effects of multi-walled carbon nanotubes and Mn0.4Cu0.6Fe2O4 on mercury removal with high efficiency and sulfur resistance
Although ferrite-based adsorbents are the potential mercury removal materials for the high thermal stability, they usually suffer from a low efficiency in flue gas environment, especially under SO2 condition. In the present paper, the multi-walled carbon nanotubes (MWCNTs) are utilized to improve the adsorption capacity of the Mn0.4Cu0.6Fe2O4 adsorbents as well as inhibit the influence of flue gas composition. The influences of temperature, adsorbent type and the flue gas composition on Hg0 removal efficiency are evaluated by experiments. The physical adsorption property of MWCNTs provides a platform for Hg0 oxidation by Mn0.4Cu0.6Fe2O4. The synergistic effect between MWCNTs and Mn0.4Cu0.6Fe2O4 enhances the mercury removal efficiency as well we the sulfur resistance. The results find that the adsorbent of Mn0.4Cu0.6Fe2O4 containing 14 % MWCNTs has a high mercury removal efficiency of 95.6 % at 120 °C even under 1000 ppm SO2 concentration. The kinetic behaviors of adsorbent adsorption are analyzed by theoretical models. The mechanisms of porous carbon-containing modifier to improve the mercury removal performance of Mn0.4Cu0.6Fe2O4 are explored carefully. The present ferrite-based adsorbent exhibits promising prospects for the practical industrial applications of the low temperature mercury removal from coal-fired flue gas.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.