通过无金属生物炭改性提高 H2S 修复效率:氮的引入和中孔的形成

IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL Journal of Analytical and Applied Pyrolysis Pub Date : 2024-10-01 DOI:10.1016/j.jaap.2024.106822
Seul Yi Kim , Ajit Dattatray Phule , Jae Hwan Yang , Seung-Chul Park
{"title":"通过无金属生物炭改性提高 H2S 修复效率:氮的引入和中孔的形成","authors":"Seul Yi Kim ,&nbsp;Ajit Dattatray Phule ,&nbsp;Jae Hwan Yang ,&nbsp;Seung-Chul Park","doi":"10.1016/j.jaap.2024.106822","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen sulfide (H₂S) poses substantial risks to human safety and infrastructure due to its toxicity and corrosive properties. In this study, we present a novel approach to enhance the selective catalytic oxidation of H₂S by synthesizing a nitrogen-doped mesoporous carbon catalyst (denoted as M/B-X-PZ-T) through pyrolysis at 600–800 °C. Our catalyst, derived from commercial biochar, incorporates melamine as a nitrogen source and employs KCl and ZnCl₂ as porogens via the salt-templating method. The resulting catalyst, M/B-1-PZ-700, exhibits an impressive specific surface area of up to 1269.77 m²/g and a high mesopore ratio, with effective nitrogen doping reaching up to 15.35 at%. Remarkably, M/B-1-PZ-700 demonstrated exceptional performance, achieving 100 % H₂S conversion and 94 % sulfur selectivity at 170 °C, surpassing previous nitrogen-doped carbon catalysts. Furthermore, our optimized catalyst maintained over 95 % H₂S conversion and superior sulfur yield for 36 h, indicating excellent long-term stability. This metal-free catalyst derived from biochar offers a promising, sustainable, and eco-friendly solution for effectively mitigating hazardous H₂S emissions.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"183 ","pages":"Article 106822"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving H2S remediation efficiency through metal-free biochar modification: Nitrogen introduction and mesopore formation\",\"authors\":\"Seul Yi Kim ,&nbsp;Ajit Dattatray Phule ,&nbsp;Jae Hwan Yang ,&nbsp;Seung-Chul Park\",\"doi\":\"10.1016/j.jaap.2024.106822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen sulfide (H₂S) poses substantial risks to human safety and infrastructure due to its toxicity and corrosive properties. In this study, we present a novel approach to enhance the selective catalytic oxidation of H₂S by synthesizing a nitrogen-doped mesoporous carbon catalyst (denoted as M/B-X-PZ-T) through pyrolysis at 600–800 °C. Our catalyst, derived from commercial biochar, incorporates melamine as a nitrogen source and employs KCl and ZnCl₂ as porogens via the salt-templating method. The resulting catalyst, M/B-1-PZ-700, exhibits an impressive specific surface area of up to 1269.77 m²/g and a high mesopore ratio, with effective nitrogen doping reaching up to 15.35 at%. Remarkably, M/B-1-PZ-700 demonstrated exceptional performance, achieving 100 % H₂S conversion and 94 % sulfur selectivity at 170 °C, surpassing previous nitrogen-doped carbon catalysts. Furthermore, our optimized catalyst maintained over 95 % H₂S conversion and superior sulfur yield for 36 h, indicating excellent long-term stability. This metal-free catalyst derived from biochar offers a promising, sustainable, and eco-friendly solution for effectively mitigating hazardous H₂S emissions.</div></div>\",\"PeriodicalId\":345,\"journal\":{\"name\":\"Journal of Analytical and Applied Pyrolysis\",\"volume\":\"183 \",\"pages\":\"Article 106822\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical and Applied Pyrolysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165237024004777\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024004777","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

硫化氢(H₂S)具有毒性和腐蚀性,对人类安全和基础设施构成重大风险。在本研究中,我们提出了一种新方法,通过在 600-800 °C 高温分解合成掺氮介孔碳催化剂(代号为 M/B-X-PZ-T),从而提高硫化氢的选择性催化氧化。我们的催化剂来源于商用生物炭,以三聚氰胺为氮源,并通过盐模板法使用氯化钾和氯化锌₂作为致孔剂。催化剂 M/B-1-PZ-700 的比表面积高达 1269.77 m²/g,中孔率很高,有效氮掺杂高达 15.35%。值得注意的是,M/B-1-PZ-700 表现出了卓越的性能,在 170 °C 时实现了 100 % 的 H₂S 转化率和 94 % 的硫选择性,超过了之前的掺氮碳催化剂。此外,我们优化后的催化剂在 36 小时内仍能保持 95% 以上的 H₂S 转化率和优异的硫产量,这表明催化剂具有出色的长期稳定性。这种从生物炭中提取的无金属催化剂为有效减少有害 H₂S 的排放提供了一种前景广阔、可持续且环保的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving H2S remediation efficiency through metal-free biochar modification: Nitrogen introduction and mesopore formation
Hydrogen sulfide (H₂S) poses substantial risks to human safety and infrastructure due to its toxicity and corrosive properties. In this study, we present a novel approach to enhance the selective catalytic oxidation of H₂S by synthesizing a nitrogen-doped mesoporous carbon catalyst (denoted as M/B-X-PZ-T) through pyrolysis at 600–800 °C. Our catalyst, derived from commercial biochar, incorporates melamine as a nitrogen source and employs KCl and ZnCl₂ as porogens via the salt-templating method. The resulting catalyst, M/B-1-PZ-700, exhibits an impressive specific surface area of up to 1269.77 m²/g and a high mesopore ratio, with effective nitrogen doping reaching up to 15.35 at%. Remarkably, M/B-1-PZ-700 demonstrated exceptional performance, achieving 100 % H₂S conversion and 94 % sulfur selectivity at 170 °C, surpassing previous nitrogen-doped carbon catalysts. Furthermore, our optimized catalyst maintained over 95 % H₂S conversion and superior sulfur yield for 36 h, indicating excellent long-term stability. This metal-free catalyst derived from biochar offers a promising, sustainable, and eco-friendly solution for effectively mitigating hazardous H₂S emissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
11.70%
发文量
340
审稿时长
44 days
期刊介绍: The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.
期刊最新文献
Mapping of tobacco conversion characteristics in electrically heated systems: Effect of air and temperatures on the onset of combustion and formation of volatile species Highly efficient catalytic hydrocracking of East Inner Mongolia lignite and lignite-related model compounds through selective cleavage of aryl C-O bonds Reaction kinetics dominated by melt decomposition mechanism: Intrinsic pyrolysis of insensitive HTPE polyurethane and the efficient inter-reaction with AP An inclusive experimental and kinetic understanding of the slurry phase hydroprocessing of crude oil with an active dispersed catalyst to obtain refined fuel Study on common amino acid pyrolysis products and analysis of pyrolysis products from interaction with aspartic acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1