Adnan Asad Karim , María Lourdes Martínez-Cartas , Manuel Cuevas-Aranda
{"title":"通过微波水热碳化橄榄油工业中的橄榄渣浆生产水碳燃料,并将其应用于燃烧","authors":"Adnan Asad Karim , María Lourdes Martínez-Cartas , Manuel Cuevas-Aranda","doi":"10.1016/j.jaap.2024.106801","DOIUrl":null,"url":null,"abstract":"<div><div>This work is the first investigation on microwave-assisted hydrothermal carbonisation (MHTC) of real olive pomace (OP) slurry from the olive oil industry to produce hydrochars with improved fuel properties for combustion applications (e.g., in boilers). Experiments were conducted based on the central composite design of response surface methodology with two main process variables: temperature (180–250 °C) and holding time (2–30 min). Severity factors (log R<sub>0</sub>) were calculated from the above variables and used to explain the process effect in a simpler way. Increasing the MHTC severity resulted in significant changes in the structure of OP (studied by FTIR and NMR analyses) as well as reductions in yield, bulk density, volatile matter, and ash content in the hydrochars. The high-severity hydrochar was positioned in the lignite zone (van Krevelen diagram). It also exhibited substantial reductions in the alkali index (86.53 %), slagging index (76.89 %), and fouling index (96.07 %) compared to the raw material. Overall, the best conditions for hydrochar production with improved combustion characteristics were found to be 250 °C for 30 min (HHV = 28.45 MJ/kg, energy densification ratio = 1.25, equilibrium moisture content = 31.1 mg/g, comprehensive combustibility index = 2.94 × 10<sup>−7</sup>%<sup>2</sup> min<sup>−2</sup> ºC<sup>−3</sup>). These properties indicate that high-severity hydrochars could be utilised as biofuels for energy applications.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"183 ","pages":"Article 106801"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of hydrochar fuel by microwave-hydrothermal carbonisation of olive pomace slurry from olive oil industry for combustion application\",\"authors\":\"Adnan Asad Karim , María Lourdes Martínez-Cartas , Manuel Cuevas-Aranda\",\"doi\":\"10.1016/j.jaap.2024.106801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work is the first investigation on microwave-assisted hydrothermal carbonisation (MHTC) of real olive pomace (OP) slurry from the olive oil industry to produce hydrochars with improved fuel properties for combustion applications (e.g., in boilers). Experiments were conducted based on the central composite design of response surface methodology with two main process variables: temperature (180–250 °C) and holding time (2–30 min). Severity factors (log R<sub>0</sub>) were calculated from the above variables and used to explain the process effect in a simpler way. Increasing the MHTC severity resulted in significant changes in the structure of OP (studied by FTIR and NMR analyses) as well as reductions in yield, bulk density, volatile matter, and ash content in the hydrochars. The high-severity hydrochar was positioned in the lignite zone (van Krevelen diagram). It also exhibited substantial reductions in the alkali index (86.53 %), slagging index (76.89 %), and fouling index (96.07 %) compared to the raw material. Overall, the best conditions for hydrochar production with improved combustion characteristics were found to be 250 °C for 30 min (HHV = 28.45 MJ/kg, energy densification ratio = 1.25, equilibrium moisture content = 31.1 mg/g, comprehensive combustibility index = 2.94 × 10<sup>−7</sup>%<sup>2</sup> min<sup>−2</sup> ºC<sup>−3</sup>). These properties indicate that high-severity hydrochars could be utilised as biofuels for energy applications.</div></div>\",\"PeriodicalId\":345,\"journal\":{\"name\":\"Journal of Analytical and Applied Pyrolysis\",\"volume\":\"183 \",\"pages\":\"Article 106801\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical and Applied Pyrolysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016523702400456X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016523702400456X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Production of hydrochar fuel by microwave-hydrothermal carbonisation of olive pomace slurry from olive oil industry for combustion application
This work is the first investigation on microwave-assisted hydrothermal carbonisation (MHTC) of real olive pomace (OP) slurry from the olive oil industry to produce hydrochars with improved fuel properties for combustion applications (e.g., in boilers). Experiments were conducted based on the central composite design of response surface methodology with two main process variables: temperature (180–250 °C) and holding time (2–30 min). Severity factors (log R0) were calculated from the above variables and used to explain the process effect in a simpler way. Increasing the MHTC severity resulted in significant changes in the structure of OP (studied by FTIR and NMR analyses) as well as reductions in yield, bulk density, volatile matter, and ash content in the hydrochars. The high-severity hydrochar was positioned in the lignite zone (van Krevelen diagram). It also exhibited substantial reductions in the alkali index (86.53 %), slagging index (76.89 %), and fouling index (96.07 %) compared to the raw material. Overall, the best conditions for hydrochar production with improved combustion characteristics were found to be 250 °C for 30 min (HHV = 28.45 MJ/kg, energy densification ratio = 1.25, equilibrium moisture content = 31.1 mg/g, comprehensive combustibility index = 2.94 × 10−7%2 min−2 ºC−3). These properties indicate that high-severity hydrochars could be utilised as biofuels for energy applications.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.