新颖的能量约束布森斯克模型和平衡稳定的数值离散化方法

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computational Physics Pub Date : 2024-10-18 DOI:10.1016/j.jcp.2024.113516
Magnus Svärd, Henrik Kalisch
{"title":"新颖的能量约束布森斯克模型和平衡稳定的数值离散化方法","authors":"Magnus Svärd,&nbsp;Henrik Kalisch","doi":"10.1016/j.jcp.2024.113516","DOIUrl":null,"url":null,"abstract":"<div><div>Many Boussinesq models suffer from nonlinear instabilities, especially in the context of rapid variations in the bed topography. In this work, a Boussinesq system is put forward which is derived in such a way as to be both linearly and nonlinearly energy-stable.</div><div>The proposed system is designed to be robust for coastal simulations with sharply varying bathymetric features while maintaining the dispersive accuracy at any constant depth. For constant bathymetries, the system has the same linear dispersion relation as Peregrine's system (<span><span>[22]</span></span>). Furthermore, the system transitions smoothly to the shallow-water system as the depth goes to zero.</div><div>In the one-dimensional case, we design a stable finite-volume scheme and demonstrate its robustness, accuracy and stability under grid refinement in a suite of test problems including Dingemans's wave experiment.</div><div>Finally, we generalise the system to the two-dimensional case.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"520 ","pages":"Article 113516"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel energy-bounded Boussinesq model and a well balanced and stable numerical discretisation\",\"authors\":\"Magnus Svärd,&nbsp;Henrik Kalisch\",\"doi\":\"10.1016/j.jcp.2024.113516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many Boussinesq models suffer from nonlinear instabilities, especially in the context of rapid variations in the bed topography. In this work, a Boussinesq system is put forward which is derived in such a way as to be both linearly and nonlinearly energy-stable.</div><div>The proposed system is designed to be robust for coastal simulations with sharply varying bathymetric features while maintaining the dispersive accuracy at any constant depth. For constant bathymetries, the system has the same linear dispersion relation as Peregrine's system (<span><span>[22]</span></span>). Furthermore, the system transitions smoothly to the shallow-water system as the depth goes to zero.</div><div>In the one-dimensional case, we design a stable finite-volume scheme and demonstrate its robustness, accuracy and stability under grid refinement in a suite of test problems including Dingemans's wave experiment.</div><div>Finally, we generalise the system to the two-dimensional case.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"520 \",\"pages\":\"Article 113516\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124007642\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124007642","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

许多布森斯克模型都存在非线性不稳定性,特别是在海床地形快速变化的情况下。在这项工作中,提出了一种布西内斯克系统,其推导方式既是线性的,也是非线性的,具有能 量稳定性。所提出的系统设计用于具有急剧变化的水深特征的沿岸模拟,具有鲁棒性,同时在 任何恒定深度下都能保持分散精度。对于恒定的水深,该系统与 Peregrine 系统([22])具有相同的线性频散关系。在一维情况下,我们设计了一个稳定的有限体积方案,并在一系列测试问题(包括 Dingemans 的波浪实验)中证明了该方案在网格细化下的鲁棒性、精确性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel energy-bounded Boussinesq model and a well balanced and stable numerical discretisation
Many Boussinesq models suffer from nonlinear instabilities, especially in the context of rapid variations in the bed topography. In this work, a Boussinesq system is put forward which is derived in such a way as to be both linearly and nonlinearly energy-stable.
The proposed system is designed to be robust for coastal simulations with sharply varying bathymetric features while maintaining the dispersive accuracy at any constant depth. For constant bathymetries, the system has the same linear dispersion relation as Peregrine's system ([22]). Furthermore, the system transitions smoothly to the shallow-water system as the depth goes to zero.
In the one-dimensional case, we design a stable finite-volume scheme and demonstrate its robustness, accuracy and stability under grid refinement in a suite of test problems including Dingemans's wave experiment.
Finally, we generalise the system to the two-dimensional case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
期刊最新文献
Computing transition pathways for the study of rare events using deep reinforcement learning Instantaneous control strategies for magnetically confined fusion plasma Sampling metastable systems using collective variables and Jarzynski–Crooks paths Entropy stable hydrostatic reconstruction schemes for shallow water systems PFWNN: A deep learning method for solving forward and inverse problems of phase-field models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1