数据驱动发现质子陶瓷电池电极材料

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Reviews Pub Date : 2024-10-29 DOI:10.1039/d4ee03762f
Xueyu Hu, Yucun Zhou, Zheyu Luo, Haoyu Li, Nai Shi, Zhijun Liu, Weilin Zhang, Weining Wang, Yong Ding, Meilin Liu
{"title":"数据驱动发现质子陶瓷电池电极材料","authors":"Xueyu Hu, Yucun Zhou, Zheyu Luo, Haoyu Li, Nai Shi, Zhijun Liu, Weilin Zhang, Weining Wang, Yong Ding, Meilin Liu","doi":"10.1039/d4ee03762f","DOIUrl":null,"url":null,"abstract":"Protonic Ceramic Electrochemical Cells (PCECs) offer an efficient solution for the closed-loop conversion between chemical and electrical energy, supporting zero-emission objectives. The varying and high-humidity conditions on the oxygen electrode side necessitate the development of novel materials with superior electro-catalytic activity and durability. In this study, we circumvent conventional trial-and-error approaches by utilizing high-throughput calculations and a novel data-driven decomposition analysis to predict the key properties important for applications of 4,455 distinct perovskite oxides, including thermodynamic stability and decomposition tendencies. Our analysis results in a small number of highly promising candidates. Among them, PrBaCo1.9Hf0.1O5+δ demonstrates exceptional performance in PCECs, achieving peak power densities of 1.49 W cm-2 at 600 °C and 0.6 W cm-2 at 450 °C in fuel cell mode and extraordinary current density (2.78 A cm-2) at an applied voltage of 1.3 V at 600 °C in electrolysis mode, while maintaining outstanding durability over 500 hours of operation. This study highlights the pivotal role of data-driven high-throughput calculations in accelerating the discovery of novel materials for various clean energy technologies.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"15 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven Discovery of Electrode Materials for Protonic Ceramic Cells\",\"authors\":\"Xueyu Hu, Yucun Zhou, Zheyu Luo, Haoyu Li, Nai Shi, Zhijun Liu, Weilin Zhang, Weining Wang, Yong Ding, Meilin Liu\",\"doi\":\"10.1039/d4ee03762f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protonic Ceramic Electrochemical Cells (PCECs) offer an efficient solution for the closed-loop conversion between chemical and electrical energy, supporting zero-emission objectives. The varying and high-humidity conditions on the oxygen electrode side necessitate the development of novel materials with superior electro-catalytic activity and durability. In this study, we circumvent conventional trial-and-error approaches by utilizing high-throughput calculations and a novel data-driven decomposition analysis to predict the key properties important for applications of 4,455 distinct perovskite oxides, including thermodynamic stability and decomposition tendencies. Our analysis results in a small number of highly promising candidates. Among them, PrBaCo1.9Hf0.1O5+δ demonstrates exceptional performance in PCECs, achieving peak power densities of 1.49 W cm-2 at 600 °C and 0.6 W cm-2 at 450 °C in fuel cell mode and extraordinary current density (2.78 A cm-2) at an applied voltage of 1.3 V at 600 °C in electrolysis mode, while maintaining outstanding durability over 500 hours of operation. This study highlights the pivotal role of data-driven high-throughput calculations in accelerating the discovery of novel materials for various clean energy technologies.\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":51.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ee03762f\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03762f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

质子陶瓷电化学电池(PCEC)为化学能和电能之间的闭环转换提供了一种高效的解决方案,有助于实现零排放目标。由于氧电极一侧的条件多变且湿度高,因此有必要开发具有卓越电催化活性和耐用性的新型材料。在这项研究中,我们利用高通量计算和新颖的数据驱动分解分析,预测了 4455 种不同的过氧化物氧化物在应用中的关键特性,包括热力学稳定性和分解倾向,从而避免了传统的试错方法。通过分析,我们发现了少数极具潜力的候选化合物。其中,PrBaCo1.9Hf0.1O5+δ 在 PCEC 中表现出卓越的性能,在燃料电池模式下,其峰值功率密度在 600 °C 时达到 1.49 W cm-2,在 450 °C 时达到 0.6 W cm-2;在电解模式下,其峰值功率密度在 600 °C 时达到 1.3 V,电流密度达到 2.78 A cm-2,同时在 500 小时的工作时间内保持出色的耐用性。这项研究凸显了数据驱动的高通量计算在加速发现用于各种清洁能源技术的新型材料方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven Discovery of Electrode Materials for Protonic Ceramic Cells
Protonic Ceramic Electrochemical Cells (PCECs) offer an efficient solution for the closed-loop conversion between chemical and electrical energy, supporting zero-emission objectives. The varying and high-humidity conditions on the oxygen electrode side necessitate the development of novel materials with superior electro-catalytic activity and durability. In this study, we circumvent conventional trial-and-error approaches by utilizing high-throughput calculations and a novel data-driven decomposition analysis to predict the key properties important for applications of 4,455 distinct perovskite oxides, including thermodynamic stability and decomposition tendencies. Our analysis results in a small number of highly promising candidates. Among them, PrBaCo1.9Hf0.1O5+δ demonstrates exceptional performance in PCECs, achieving peak power densities of 1.49 W cm-2 at 600 °C and 0.6 W cm-2 at 450 °C in fuel cell mode and extraordinary current density (2.78 A cm-2) at an applied voltage of 1.3 V at 600 °C in electrolysis mode, while maintaining outstanding durability over 500 hours of operation. This study highlights the pivotal role of data-driven high-throughput calculations in accelerating the discovery of novel materials for various clean energy technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
期刊最新文献
The Analysis of Electron Densities: From Basics to Emergent Applications Asymmetric Orbital Hybridization at MXene-VO2-x Interface Stabilizes Oxygen Vacancies for Enhanced Reversibility in Aqueous Zinc-ion Battery Noncanonical Amino Acid Incorporation in Animals and Animal Cells. Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1