Hui-Chun Yu, Hsien-Yu Huang Tseng, Hsien-Bin Huang, Ming-Chi Lu
{"title":"受 Ca2+ 流入调控的 Circ-CAMTA1 可抑制丙酮酸羧化酶活性并调节系统性红斑狼疮患者的 T 细胞功能","authors":"Hui-Chun Yu, Hsien-Yu Huang Tseng, Hsien-Bin Huang, Ming-Chi Lu","doi":"10.1186/s13075-024-03422-6","DOIUrl":null,"url":null,"abstract":"To investigate the roles of Ca2+ influx-regulated circular RNAs (circRNAs) in T cells from patients with systemic lupus erythematosus (SLE). The expression profile of circRNAs in Jurkat cells, co-cultured with and without ionomycin, was analyzed by next-generation sequencing and validated using real-time polymerase chain reaction. The identified Ca2+ influx-regulated circRNAs were further examined in T cells from 42 patients with SLE and 23 healthy controls. The biological function of specific circRNA was investigated using transfection and RNA pull-down assay. After validation, we confirmed that the expression levels of circ-ERCC4, circ-NFATC2, circ-MYH10, circ-CAMTA1, circ-ASH1L, circ-SOCS7, and circ-ASAP1 were consistently increased in Jurkat cells following Ca2+ influx. The expression levels of circ-CAMTA1, circ-ASH1L, and circ-ASAP1 were significantly lower in T cells from patients with SLE, with even lower levels observed in those with higher disease activity. Interferon (IFN)-α was found to suppress the expression of circ-CAMTA1. Circ-CAMTA1 bound to pyruvate carboxylase and inhibited its biological activity. Overexpression of circ-CAMTA1, but not its linear form, significantly decreased extracellular glucose levels. Furthermore, increased expression of circ-CAMTA1, but not its linear form, decreased miR-181c-5p expression, resulting increased IL-2 secretion. Three Ca2+ influx-regulated circ-RNAs—circ-CAMTA1, circ-ASH1L, and circ-ASAP1 —were significantly reduced in T cells from patients with SLE and associated with disease activity. IFN-α suppressed the expression of circ-CAMTA1, which interacted with pyruvate carboxylase, inhibited its activity, affected glucose metabolism, and increased IL-2 secretion. These findings suggest that circ-CAMTA1 regulated by Ca²⁺ influx modulated T cell function in patients with SLE.","PeriodicalId":8419,"journal":{"name":"Arthritis Research & Therapy","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circ-CAMTA1 regulated by Ca2+ influx inhibited pyruvate carboxylase activity and modulate T cell function in patients with systemic lupus erythematosus\",\"authors\":\"Hui-Chun Yu, Hsien-Yu Huang Tseng, Hsien-Bin Huang, Ming-Chi Lu\",\"doi\":\"10.1186/s13075-024-03422-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the roles of Ca2+ influx-regulated circular RNAs (circRNAs) in T cells from patients with systemic lupus erythematosus (SLE). The expression profile of circRNAs in Jurkat cells, co-cultured with and without ionomycin, was analyzed by next-generation sequencing and validated using real-time polymerase chain reaction. The identified Ca2+ influx-regulated circRNAs were further examined in T cells from 42 patients with SLE and 23 healthy controls. The biological function of specific circRNA was investigated using transfection and RNA pull-down assay. After validation, we confirmed that the expression levels of circ-ERCC4, circ-NFATC2, circ-MYH10, circ-CAMTA1, circ-ASH1L, circ-SOCS7, and circ-ASAP1 were consistently increased in Jurkat cells following Ca2+ influx. The expression levels of circ-CAMTA1, circ-ASH1L, and circ-ASAP1 were significantly lower in T cells from patients with SLE, with even lower levels observed in those with higher disease activity. Interferon (IFN)-α was found to suppress the expression of circ-CAMTA1. Circ-CAMTA1 bound to pyruvate carboxylase and inhibited its biological activity. Overexpression of circ-CAMTA1, but not its linear form, significantly decreased extracellular glucose levels. Furthermore, increased expression of circ-CAMTA1, but not its linear form, decreased miR-181c-5p expression, resulting increased IL-2 secretion. Three Ca2+ influx-regulated circ-RNAs—circ-CAMTA1, circ-ASH1L, and circ-ASAP1 —were significantly reduced in T cells from patients with SLE and associated with disease activity. IFN-α suppressed the expression of circ-CAMTA1, which interacted with pyruvate carboxylase, inhibited its activity, affected glucose metabolism, and increased IL-2 secretion. These findings suggest that circ-CAMTA1 regulated by Ca²⁺ influx modulated T cell function in patients with SLE.\",\"PeriodicalId\":8419,\"journal\":{\"name\":\"Arthritis Research & Therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arthritis Research & Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13075-024-03422-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthritis Research & Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13075-024-03422-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Circ-CAMTA1 regulated by Ca2+ influx inhibited pyruvate carboxylase activity and modulate T cell function in patients with systemic lupus erythematosus
To investigate the roles of Ca2+ influx-regulated circular RNAs (circRNAs) in T cells from patients with systemic lupus erythematosus (SLE). The expression profile of circRNAs in Jurkat cells, co-cultured with and without ionomycin, was analyzed by next-generation sequencing and validated using real-time polymerase chain reaction. The identified Ca2+ influx-regulated circRNAs were further examined in T cells from 42 patients with SLE and 23 healthy controls. The biological function of specific circRNA was investigated using transfection and RNA pull-down assay. After validation, we confirmed that the expression levels of circ-ERCC4, circ-NFATC2, circ-MYH10, circ-CAMTA1, circ-ASH1L, circ-SOCS7, and circ-ASAP1 were consistently increased in Jurkat cells following Ca2+ influx. The expression levels of circ-CAMTA1, circ-ASH1L, and circ-ASAP1 were significantly lower in T cells from patients with SLE, with even lower levels observed in those with higher disease activity. Interferon (IFN)-α was found to suppress the expression of circ-CAMTA1. Circ-CAMTA1 bound to pyruvate carboxylase and inhibited its biological activity. Overexpression of circ-CAMTA1, but not its linear form, significantly decreased extracellular glucose levels. Furthermore, increased expression of circ-CAMTA1, but not its linear form, decreased miR-181c-5p expression, resulting increased IL-2 secretion. Three Ca2+ influx-regulated circ-RNAs—circ-CAMTA1, circ-ASH1L, and circ-ASAP1 —were significantly reduced in T cells from patients with SLE and associated with disease activity. IFN-α suppressed the expression of circ-CAMTA1, which interacted with pyruvate carboxylase, inhibited its activity, affected glucose metabolism, and increased IL-2 secretion. These findings suggest that circ-CAMTA1 regulated by Ca²⁺ influx modulated T cell function in patients with SLE.
期刊介绍:
Established in 1999, Arthritis Research and Therapy is an international, open access, peer-reviewed journal, publishing original articles in the area of musculoskeletal research and therapy as well as, reviews, commentaries and reports. A major focus of the journal is on the immunologic processes leading to inflammation, damage and repair as they relate to autoimmune rheumatic and musculoskeletal conditions, and which inform the translation of this knowledge into advances in clinical care. Original basic, translational and clinical research is considered for publication along with results of early and late phase therapeutic trials, especially as they pertain to the underpinning science that informs clinical observations in interventional studies.