具有混合耦合和不确定时变扰动的非线性神经网络的同步:新型分布式延迟脉冲比较原理

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-10-24 DOI:10.1016/j.neucom.2024.128729
Hongguang Fan , Kaibo Shi , Yi Zhao
{"title":"具有混合耦合和不确定时变扰动的非线性神经网络的同步:新型分布式延迟脉冲比较原理","authors":"Hongguang Fan ,&nbsp;Kaibo Shi ,&nbsp;Yi Zhao","doi":"10.1016/j.neucom.2024.128729","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the synchronization of nonlinear drive-response neural networks subject to uncertain time-varying perturbations, non-delayed coupling, and distributed delay coupling. To address the influence of distributed and discrete delays on the system, we establish a novel impulsive comparison principle, extending the Halanay inequality. By leveraging Lyapunov stability theory, we derive sufficient conditions for the exponential synchronization of the neural networks using a delayed impulsive controller with historical status information. This approach relaxes the conventional constraint that impulsive delays must be smaller than impulsive intervals, thereby generalizing existing synchronization results for distributed delay networks. Numerical simulations for chaotic neural networks validate the theoretical results and demonstrate the sensitivity of the control gain matrix.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"613 ","pages":"Article 128729"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization of nonlinear neural networks with hybrid couplings and uncertain time-varying perturbations: A novel distributed-delay impulsive comparison principle\",\"authors\":\"Hongguang Fan ,&nbsp;Kaibo Shi ,&nbsp;Yi Zhao\",\"doi\":\"10.1016/j.neucom.2024.128729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the synchronization of nonlinear drive-response neural networks subject to uncertain time-varying perturbations, non-delayed coupling, and distributed delay coupling. To address the influence of distributed and discrete delays on the system, we establish a novel impulsive comparison principle, extending the Halanay inequality. By leveraging Lyapunov stability theory, we derive sufficient conditions for the exponential synchronization of the neural networks using a delayed impulsive controller with historical status information. This approach relaxes the conventional constraint that impulsive delays must be smaller than impulsive intervals, thereby generalizing existing synchronization results for distributed delay networks. Numerical simulations for chaotic neural networks validate the theoretical results and demonstrate the sensitivity of the control gain matrix.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"613 \",\"pages\":\"Article 128729\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224015005\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015005","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了受不确定时变扰动、非延迟耦合和分布延迟耦合影响的非线性驱动-响应神经网络的同步问题。为了解决分布式延迟和离散延迟对系统的影响,我们扩展了哈拉内不等式,建立了一个新的脉冲比较原理。通过利用 Lyapunov 稳定性理论,我们推导出了使用具有历史状态信息的延迟脉冲控制器实现神经网络指数同步的充分条件。这种方法放宽了脉冲延迟必须小于脉冲间隔的传统约束,从而推广了分布式延迟网络的现有同步结果。混沌神经网络的数值模拟验证了理论结果,并证明了控制增益矩阵的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synchronization of nonlinear neural networks with hybrid couplings and uncertain time-varying perturbations: A novel distributed-delay impulsive comparison principle
This paper investigates the synchronization of nonlinear drive-response neural networks subject to uncertain time-varying perturbations, non-delayed coupling, and distributed delay coupling. To address the influence of distributed and discrete delays on the system, we establish a novel impulsive comparison principle, extending the Halanay inequality. By leveraging Lyapunov stability theory, we derive sufficient conditions for the exponential synchronization of the neural networks using a delayed impulsive controller with historical status information. This approach relaxes the conventional constraint that impulsive delays must be smaller than impulsive intervals, thereby generalizing existing synchronization results for distributed delay networks. Numerical simulations for chaotic neural networks validate the theoretical results and demonstrate the sensitivity of the control gain matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Virtual sample generation for small sample learning: A survey, recent developments and future prospects Adaptive selection of spectral–spatial features for hyperspectral image classification using a modified-CBAM-based network FPGA-based component-wise LSTM training accelerator for neural granger causality analysis Multi-sensor information fusion in Internet of Vehicles based on deep learning: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1