{"title":"新颖的全球视角:描述双摆的分形吸引盆地和混沌水平","authors":"Bo Qin , Ying Zhang","doi":"10.1016/j.chaos.2024.115694","DOIUrl":null,"url":null,"abstract":"<div><div>The objective of this work is to deeply investigate the sensitivity to initial conditions and the factors influencing the level of chaos in a double pendulum system from a novel global perspective. Firstly, the pendulum's motion trajectories and mechanical energy are compared to determine the appropriate numerical algorithms for solving this model, including the fourth-order Runge-Kutta method (RK4 method) and the Euler method. Secondly, the captured experimental motion trajectories, along with numerical results, vividly demonstrate the system's sensitivity to initial conditions. On this basis, we develop an algorithm that successfully delineates the basins of attraction associated with the number of flips and the final angular positions of the pendulum, uncovering a petal-like structure characterized by significant rotational symmetry and fractal features. Finally, we employ a heat map of the average maximum Lyapunov exponent to reveal the correlation between mass ratio and the level of chaos. Both qualitative and quantitative results consistently confirm the mechanisms underlying the system's sensitivity to initial conditions and the reliability of the developed algorithm. This research provides valuable insights into the global dynamics and engineering applications of the double pendulum system.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel global perspective: Characterizing the fractal basins of attraction and the level of chaos in a double pendulum\",\"authors\":\"Bo Qin , Ying Zhang\",\"doi\":\"10.1016/j.chaos.2024.115694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The objective of this work is to deeply investigate the sensitivity to initial conditions and the factors influencing the level of chaos in a double pendulum system from a novel global perspective. Firstly, the pendulum's motion trajectories and mechanical energy are compared to determine the appropriate numerical algorithms for solving this model, including the fourth-order Runge-Kutta method (RK4 method) and the Euler method. Secondly, the captured experimental motion trajectories, along with numerical results, vividly demonstrate the system's sensitivity to initial conditions. On this basis, we develop an algorithm that successfully delineates the basins of attraction associated with the number of flips and the final angular positions of the pendulum, uncovering a petal-like structure characterized by significant rotational symmetry and fractal features. Finally, we employ a heat map of the average maximum Lyapunov exponent to reveal the correlation between mass ratio and the level of chaos. Both qualitative and quantitative results consistently confirm the mechanisms underlying the system's sensitivity to initial conditions and the reliability of the developed algorithm. This research provides valuable insights into the global dynamics and engineering applications of the double pendulum system.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012463\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012463","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A novel global perspective: Characterizing the fractal basins of attraction and the level of chaos in a double pendulum
The objective of this work is to deeply investigate the sensitivity to initial conditions and the factors influencing the level of chaos in a double pendulum system from a novel global perspective. Firstly, the pendulum's motion trajectories and mechanical energy are compared to determine the appropriate numerical algorithms for solving this model, including the fourth-order Runge-Kutta method (RK4 method) and the Euler method. Secondly, the captured experimental motion trajectories, along with numerical results, vividly demonstrate the system's sensitivity to initial conditions. On this basis, we develop an algorithm that successfully delineates the basins of attraction associated with the number of flips and the final angular positions of the pendulum, uncovering a petal-like structure characterized by significant rotational symmetry and fractal features. Finally, we employ a heat map of the average maximum Lyapunov exponent to reveal the correlation between mass ratio and the level of chaos. Both qualitative and quantitative results consistently confirm the mechanisms underlying the system's sensitivity to initial conditions and the reliability of the developed algorithm. This research provides valuable insights into the global dynamics and engineering applications of the double pendulum system.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.