蜱媒疾病传播的复杂动态:具有多重时间延迟的菲利波夫型控制策略模型

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2024-10-29 DOI:10.1016/j.chaos.2024.115673
Ning Yu , Xue Zhang
{"title":"蜱媒疾病传播的复杂动态:具有多重时间延迟的菲利波夫型控制策略模型","authors":"Ning Yu ,&nbsp;Xue Zhang","doi":"10.1016/j.chaos.2024.115673","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a tick-borne disease transmission model with a Filippov-type control strategy that involves spraying insecticides to kill ticks once the number of infected hosts exceeds a certain threshold. The model also incorporates two delays in disease transmission: an internal delay <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></mrow></math></span> representing the maturation period of pathogens inside ticks, and an external delay <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo></mrow></math></span> accounting for the time from a host being bitten by an infected tick to becoming infectious. Theoretical analysis deduces that the endemic equilibrium of the delayed Filippov system may undergo a Hopf bifurcation as the delays exceed critical levels. Furthermore, based on Filippov’s convex analysis, the sliding mode dynamics of the system are explored. The results indicate that depending on the threshold levels, the system’s solutions eventually converge to either the regular equilibrium of the two subsystems, a pseudo-equilibrium on the sliding mode, or a stable periodic solution. From a numerical perspective, the system undergoes different boundary focus bifurcation under different time delays and thresholds. Moreover, variations in the delay can lead to the emergence of a global sliding bifurcation on the sliding mode. Therefore, a Filippov system with multiple delays provides new insights and directions for controlling the spread of tick-borne diseases.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex dynamics in tick-borne disease transmission: A Filippov-type control strategy model with multiple time delays\",\"authors\":\"Ning Yu ,&nbsp;Xue Zhang\",\"doi\":\"10.1016/j.chaos.2024.115673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a tick-borne disease transmission model with a Filippov-type control strategy that involves spraying insecticides to kill ticks once the number of infected hosts exceeds a certain threshold. The model also incorporates two delays in disease transmission: an internal delay <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></mrow></math></span> representing the maturation period of pathogens inside ticks, and an external delay <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo></mrow></math></span> accounting for the time from a host being bitten by an infected tick to becoming infectious. Theoretical analysis deduces that the endemic equilibrium of the delayed Filippov system may undergo a Hopf bifurcation as the delays exceed critical levels. Furthermore, based on Filippov’s convex analysis, the sliding mode dynamics of the system are explored. The results indicate that depending on the threshold levels, the system’s solutions eventually converge to either the regular equilibrium of the two subsystems, a pseudo-equilibrium on the sliding mode, or a stable periodic solution. From a numerical perspective, the system undergoes different boundary focus bifurcation under different time delays and thresholds. Moreover, variations in the delay can lead to the emergence of a global sliding bifurcation on the sliding mode. Therefore, a Filippov system with multiple delays provides new insights and directions for controlling the spread of tick-borne diseases.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924012256\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924012256","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个蜱传疾病传播模型,该模型采用菲利波夫型控制策略,即一旦感染宿主数量超过一定临界值,就喷洒杀虫剂杀死蜱。该模型还包含疾病传播的两个延迟:内部延迟 τ1 代表蜱虫体内病原体的成熟期,外部延迟 τ2 代表宿主被感染蜱虫叮咬到成为传染源的时间。理论分析推断,当延迟超过临界水平时,延迟菲利波夫系统的流行平衡可能会发生霍普夫分岔。此外,基于菲利波夫凸分析,还探讨了系统的滑模动力学。结果表明,根据临界水平,系统的解最终会收敛到两个子系统的正则平衡、滑模伪平衡或稳定的周期解。从数值角度看,在不同的时间延迟和阈值下,系统会发生不同的边界焦点分岔。此外,延迟的变化会导致滑动模式上出现全局滑动分岔。因此,具有多重延迟的菲利波夫系统为控制蜱传疾病的传播提供了新的见解和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complex dynamics in tick-borne disease transmission: A Filippov-type control strategy model with multiple time delays
This paper presents a tick-borne disease transmission model with a Filippov-type control strategy that involves spraying insecticides to kill ticks once the number of infected hosts exceeds a certain threshold. The model also incorporates two delays in disease transmission: an internal delay τ1, representing the maturation period of pathogens inside ticks, and an external delay τ2, accounting for the time from a host being bitten by an infected tick to becoming infectious. Theoretical analysis deduces that the endemic equilibrium of the delayed Filippov system may undergo a Hopf bifurcation as the delays exceed critical levels. Furthermore, based on Filippov’s convex analysis, the sliding mode dynamics of the system are explored. The results indicate that depending on the threshold levels, the system’s solutions eventually converge to either the regular equilibrium of the two subsystems, a pseudo-equilibrium on the sliding mode, or a stable periodic solution. From a numerical perspective, the system undergoes different boundary focus bifurcation under different time delays and thresholds. Moreover, variations in the delay can lead to the emergence of a global sliding bifurcation on the sliding mode. Therefore, a Filippov system with multiple delays provides new insights and directions for controlling the spread of tick-borne diseases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Emergence of relaxation beat-waves in genuinely nonlinear Klein-Gordon chain with bi-harmonic parametric excitation A special memristive diode-bridge-based hyperchaotic hyperjerk autonomous circuit with three positive Lyapunov exponents Impulsive quasi-containment control in stochastic heterogeneous multiplex networks A novel spatio-temporal prediction model of epidemic spread integrating cellular automata with agent-based modeling Prescribed-time multi-coalition Nash equilibrium seeking by event-triggered communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1