A. Tajik , A. Zarei-Hanzaki , Gunjick Lee , Seok Su Sohn , H.R. Abedi
{"title":"添加氮的铁锰钴铬镍高熵合金的铸造性驱动室温应变硬化","authors":"A. Tajik , A. Zarei-Hanzaki , Gunjick Lee , Seok Su Sohn , H.R. Abedi","doi":"10.1016/j.msea.2024.147443","DOIUrl":null,"url":null,"abstract":"<div><div>This study deals with the strain hardening capability of a nitrogen added FeMnCoCr high-entropy alloy during room temperature tensile deformation with an emphasize on the mechanical stability of FCC phase. The heightened metastability of the FCC phase provides a proper condition for hierarchical evolution of dual-phase FCC-HCP structure which finally promotes the formation of 63 % HCP martensite. Initially favoring slip mechanisms, the texture of the FCC phase transitions to geometrically hard orientations, thereby reducing its deformation accommodation capacity. This transition prompts the involvement of the HCP phase, initially evidenced by the emergence of new FCC phase and ε-twins at HCP martensite intersections. Subsequently, the formation of thickened ε-twins within the primary HCP lathes further contributes to deformation accommodation, explaining the observed excellent hardening behavior in the as-cast structure.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"918 ","pages":"Article 147443"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metastability-driven room temperature strain hardening in a nitrogen added FeMnCoCrN high-entropy alloy\",\"authors\":\"A. Tajik , A. Zarei-Hanzaki , Gunjick Lee , Seok Su Sohn , H.R. Abedi\",\"doi\":\"10.1016/j.msea.2024.147443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study deals with the strain hardening capability of a nitrogen added FeMnCoCr high-entropy alloy during room temperature tensile deformation with an emphasize on the mechanical stability of FCC phase. The heightened metastability of the FCC phase provides a proper condition for hierarchical evolution of dual-phase FCC-HCP structure which finally promotes the formation of 63 % HCP martensite. Initially favoring slip mechanisms, the texture of the FCC phase transitions to geometrically hard orientations, thereby reducing its deformation accommodation capacity. This transition prompts the involvement of the HCP phase, initially evidenced by the emergence of new FCC phase and ε-twins at HCP martensite intersections. Subsequently, the formation of thickened ε-twins within the primary HCP lathes further contributes to deformation accommodation, explaining the observed excellent hardening behavior in the as-cast structure.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"918 \",\"pages\":\"Article 147443\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509324013741\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509324013741","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Metastability-driven room temperature strain hardening in a nitrogen added FeMnCoCrN high-entropy alloy
This study deals with the strain hardening capability of a nitrogen added FeMnCoCr high-entropy alloy during room temperature tensile deformation with an emphasize on the mechanical stability of FCC phase. The heightened metastability of the FCC phase provides a proper condition for hierarchical evolution of dual-phase FCC-HCP structure which finally promotes the formation of 63 % HCP martensite. Initially favoring slip mechanisms, the texture of the FCC phase transitions to geometrically hard orientations, thereby reducing its deformation accommodation capacity. This transition prompts the involvement of the HCP phase, initially evidenced by the emergence of new FCC phase and ε-twins at HCP martensite intersections. Subsequently, the formation of thickened ε-twins within the primary HCP lathes further contributes to deformation accommodation, explaining the observed excellent hardening behavior in the as-cast structure.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.