从海藻酸盐增强碳酸磷灰石水泥中释放夫西地酸钠:理化特性、释放行为、抗菌和细胞毒性特性

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materialia Pub Date : 2024-10-16 DOI:10.1016/j.mtla.2024.102248
Hamza Elbaza , Hanaa Mabroum , El Mehdi Toufik , Badre Eddine Halimi , Yousra Hamdan , Rachid El Fatimy , Hicham Ben youcef , Christèle Combes , Allal Barroug , Hassan Noukrati
{"title":"从海藻酸盐增强碳酸磷灰石水泥中释放夫西地酸钠:理化特性、释放行为、抗菌和细胞毒性特性","authors":"Hamza Elbaza ,&nbsp;Hanaa Mabroum ,&nbsp;El Mehdi Toufik ,&nbsp;Badre Eddine Halimi ,&nbsp;Yousra Hamdan ,&nbsp;Rachid El Fatimy ,&nbsp;Hicham Ben youcef ,&nbsp;Christèle Combes ,&nbsp;Allal Barroug ,&nbsp;Hassan Noukrati","doi":"10.1016/j.mtla.2024.102248","DOIUrl":null,"url":null,"abstract":"<div><div>The present work focuses on the development of composite cements based on dicalcium phosphate dihydrate (DCPD), calcium carbonate CaCO<sub>3</sub>, sodium alginate (AG), and sodium fusidate (FS). The effect of AG, setting accelerator (0.5 M of Na<sub>2</sub>HPO<sub>4</sub>), and antibacterial agent (FS) on the features (setting ability, injectability, cohesion, and compressive strength) of DCPD-CaCO<sub>3</sub>-based cement was investigated. The reference and composite cements are composed of a nanocrystalline carbonated apatite, similar to bone mineral, and an excess of unreacted vaterite (CaCO<sub>3</sub>). The incorporation of AG increased the composite cement's total porosity compared to the reference cement (CR). The evaluation of the injectability and cohesion properties showed that adding 10 wt % of AG resulted in a total extrusion of the paste with an improvement in the cohesion of the cement paste. The compressive strength of the cements raised from 3.2 for CR up to 7 MPa with the addition of 10 % of AG and Na<sub>2</sub>HPO<sub>4</sub> . The setting time is significantly reduced by introducing Na<sub>2</sub>HPO<sub>4</sub>, resulting in appropriate values (≤ 30 min) for clinical use. Moreover, incorporating 3 wt % of FS in the composite cements had no significant effect on their features. The release study of FS-loaded composites showed sustained and controlled release profiles, with daily released amounts at the therapeutic level. The antibacterial activity of the designed FS-loaded composites demonstrated the effectiveness of the specimens in inhibiting the growth of <em>S. Aureus</em>. Furthermore, the in vitro biological tests did not show any toxicity of the tested cements towards hPBMCs, thereby confirming their biocompatibility.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102248"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delivery of sodium fusidate from alginate-reinforced, carbonated apatite cement: Physicochemical properties, release behavior, antibacterial and cytotoxicity properties\",\"authors\":\"Hamza Elbaza ,&nbsp;Hanaa Mabroum ,&nbsp;El Mehdi Toufik ,&nbsp;Badre Eddine Halimi ,&nbsp;Yousra Hamdan ,&nbsp;Rachid El Fatimy ,&nbsp;Hicham Ben youcef ,&nbsp;Christèle Combes ,&nbsp;Allal Barroug ,&nbsp;Hassan Noukrati\",\"doi\":\"10.1016/j.mtla.2024.102248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present work focuses on the development of composite cements based on dicalcium phosphate dihydrate (DCPD), calcium carbonate CaCO<sub>3</sub>, sodium alginate (AG), and sodium fusidate (FS). The effect of AG, setting accelerator (0.5 M of Na<sub>2</sub>HPO<sub>4</sub>), and antibacterial agent (FS) on the features (setting ability, injectability, cohesion, and compressive strength) of DCPD-CaCO<sub>3</sub>-based cement was investigated. The reference and composite cements are composed of a nanocrystalline carbonated apatite, similar to bone mineral, and an excess of unreacted vaterite (CaCO<sub>3</sub>). The incorporation of AG increased the composite cement's total porosity compared to the reference cement (CR). The evaluation of the injectability and cohesion properties showed that adding 10 wt % of AG resulted in a total extrusion of the paste with an improvement in the cohesion of the cement paste. The compressive strength of the cements raised from 3.2 for CR up to 7 MPa with the addition of 10 % of AG and Na<sub>2</sub>HPO<sub>4</sub> . The setting time is significantly reduced by introducing Na<sub>2</sub>HPO<sub>4</sub>, resulting in appropriate values (≤ 30 min) for clinical use. Moreover, incorporating 3 wt % of FS in the composite cements had no significant effect on their features. The release study of FS-loaded composites showed sustained and controlled release profiles, with daily released amounts at the therapeutic level. The antibacterial activity of the designed FS-loaded composites demonstrated the effectiveness of the specimens in inhibiting the growth of <em>S. Aureus</em>. Furthermore, the in vitro biological tests did not show any toxicity of the tested cements towards hPBMCs, thereby confirming their biocompatibility.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"38 \",\"pages\":\"Article 102248\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S258915292400245X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258915292400245X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是开发基于二水磷酸二钙(DCPD)、碳酸钙 CaCO3、海藻酸钠(AG)和夫西地酸钠(FS)的复合水泥。研究了 AG、凝固促进剂(0.5 M 的 Na2HPO4)和抗菌剂(FS)对基于 DCPD-CaCO3 的水泥的特性(凝固能力、可注射性、内聚力和抗压强度)的影响。参比水门汀和复合水门汀由类似于骨矿的纳米晶碳化磷灰石和过量的未反应的脉石(CaCO3)组成。与参考水泥(CR)相比,AG 的加入增加了复合水泥的总孔隙率。对可注入性和内聚性的评估表明,添加 10 wt % 的 AG 会导致水泥浆完全挤出,同时提高水泥浆的内聚性。添加 10% 的 AG 和 Na2HPO4 后,水泥的抗压强度从 CR 的 3.2 MPa 提高到 7 MPa。引入 Na2HPO4 后,凝结时间大大缩短,达到了临床使用的适当值(≤ 30 分钟)。此外,在复合水门汀中加入 3 wt % 的 FS 对其特性没有明显影响。FS负载复合材料的释放研究显示了持续和可控的释放曲线,每日释放量达到了治疗水平。所设计的含 FS 复合材料的抗菌活性表明,试样能有效抑制金黄色葡萄球菌的生长。此外,体外生物测试表明,所测试的水门汀对 hPBMCs 没有任何毒性,从而证实了它们的生物相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Delivery of sodium fusidate from alginate-reinforced, carbonated apatite cement: Physicochemical properties, release behavior, antibacterial and cytotoxicity properties
The present work focuses on the development of composite cements based on dicalcium phosphate dihydrate (DCPD), calcium carbonate CaCO3, sodium alginate (AG), and sodium fusidate (FS). The effect of AG, setting accelerator (0.5 M of Na2HPO4), and antibacterial agent (FS) on the features (setting ability, injectability, cohesion, and compressive strength) of DCPD-CaCO3-based cement was investigated. The reference and composite cements are composed of a nanocrystalline carbonated apatite, similar to bone mineral, and an excess of unreacted vaterite (CaCO3). The incorporation of AG increased the composite cement's total porosity compared to the reference cement (CR). The evaluation of the injectability and cohesion properties showed that adding 10 wt % of AG resulted in a total extrusion of the paste with an improvement in the cohesion of the cement paste. The compressive strength of the cements raised from 3.2 for CR up to 7 MPa with the addition of 10 % of AG and Na2HPO4 . The setting time is significantly reduced by introducing Na2HPO4, resulting in appropriate values (≤ 30 min) for clinical use. Moreover, incorporating 3 wt % of FS in the composite cements had no significant effect on their features. The release study of FS-loaded composites showed sustained and controlled release profiles, with daily released amounts at the therapeutic level. The antibacterial activity of the designed FS-loaded composites demonstrated the effectiveness of the specimens in inhibiting the growth of S. Aureus. Furthermore, the in vitro biological tests did not show any toxicity of the tested cements towards hPBMCs, thereby confirming their biocompatibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
期刊最新文献
Mechano-chemical competition in driven complex concentrated alloys Nucleation of recrystallization: A new approach to consider the evolution of the substructure in the system Thermoelectric properties of Bi2Te3-based prepared by directional solidification under a high magnetic field Effect of thermal history on performance of bulk metallic glass spacecraft components Multi-phase-field lattice Boltzmann modeling and simulations of semi-solid simple shear deformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1