{"title":"基于现场测量的深切割峡谷地区大跨度桥梁多风参数联合设计方法研究","authors":"Jinxiang Zhang , Fanying Jiang , Mingjin Zhang , Haoxiang Zheng , Yongle Li , Junsong Liang","doi":"10.1016/j.jweia.2024.105930","DOIUrl":null,"url":null,"abstract":"<div><div>The univariate design method may not match the wind resistance demands of bridges in mountainous areas. Therefore, it is crucial to comprehensively consider the joint effect of multiple wind parameters for determining wind-resistant design parameters of bridges. To address challenges such as short measurement periods and difficulties in expanding the extreme value model of wind parameters, a Bootstrap resampling strategy incorporating seasonal wind speed trends was developed, verified, and applied to long-term probabilistic modeling; thus, the uncertainty of the probability model of average wind parameters was investigated. Then, taking the environmental contour of wind speed and attack angle under varying wind directions as the basis, a technical framework for wind-resistant bridges based on multi-parameter joint design is proposed. Meanwhile, the main girder's longitudinal and lateral design wind speeds are derived under the joint influence of attack angle and yaw angle. The results show that the control wind direction of longitudinal and lateral design wind speed is different. The joint design considering multiple wind parameters effectively makes up the limitations of traditional methods. It provides valuable insights for wind-resistant design and lifecycle toughness evaluation of bridges in mountainous areas.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"254 ","pages":"Article 105930"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on joint design method of multiple wind parameters for long-span bridges in deep-cutting gorge areas based on field measurement\",\"authors\":\"Jinxiang Zhang , Fanying Jiang , Mingjin Zhang , Haoxiang Zheng , Yongle Li , Junsong Liang\",\"doi\":\"10.1016/j.jweia.2024.105930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The univariate design method may not match the wind resistance demands of bridges in mountainous areas. Therefore, it is crucial to comprehensively consider the joint effect of multiple wind parameters for determining wind-resistant design parameters of bridges. To address challenges such as short measurement periods and difficulties in expanding the extreme value model of wind parameters, a Bootstrap resampling strategy incorporating seasonal wind speed trends was developed, verified, and applied to long-term probabilistic modeling; thus, the uncertainty of the probability model of average wind parameters was investigated. Then, taking the environmental contour of wind speed and attack angle under varying wind directions as the basis, a technical framework for wind-resistant bridges based on multi-parameter joint design is proposed. Meanwhile, the main girder's longitudinal and lateral design wind speeds are derived under the joint influence of attack angle and yaw angle. The results show that the control wind direction of longitudinal and lateral design wind speed is different. The joint design considering multiple wind parameters effectively makes up the limitations of traditional methods. It provides valuable insights for wind-resistant design and lifecycle toughness evaluation of bridges in mountainous areas.</div></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"254 \",\"pages\":\"Article 105930\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167610524002939\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524002939","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Study on joint design method of multiple wind parameters for long-span bridges in deep-cutting gorge areas based on field measurement
The univariate design method may not match the wind resistance demands of bridges in mountainous areas. Therefore, it is crucial to comprehensively consider the joint effect of multiple wind parameters for determining wind-resistant design parameters of bridges. To address challenges such as short measurement periods and difficulties in expanding the extreme value model of wind parameters, a Bootstrap resampling strategy incorporating seasonal wind speed trends was developed, verified, and applied to long-term probabilistic modeling; thus, the uncertainty of the probability model of average wind parameters was investigated. Then, taking the environmental contour of wind speed and attack angle under varying wind directions as the basis, a technical framework for wind-resistant bridges based on multi-parameter joint design is proposed. Meanwhile, the main girder's longitudinal and lateral design wind speeds are derived under the joint influence of attack angle and yaw angle. The results show that the control wind direction of longitudinal and lateral design wind speed is different. The joint design considering multiple wind parameters effectively makes up the limitations of traditional methods. It provides valuable insights for wind-resistant design and lifecycle toughness evaluation of bridges in mountainous areas.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.