Jifang Cao , Jiabao Ye , Tao Wang , Yong Ding , Ran Cheng , Dong Liu , Bing Chen
{"title":"基于三端氧化物电阻开关器件的非易失性逻辑门和全加法器","authors":"Jifang Cao , Jiabao Ye , Tao Wang , Yong Ding , Ran Cheng , Dong Liu , Bing Chen","doi":"10.1016/j.mee.2024.112280","DOIUrl":null,"url":null,"abstract":"<div><div>Today's on-chip computing power is constrained by the “memory wall” and “power wall” caused by the Von Neumann bottleneck. As a potential solution, this work has developed nonvolatile logic gates based on field-effect tri-terminal oxide resistive switching memory devices (3T-RRAM). A compact circuit model using a polynomial control source (PCS) is proposed to describe the behavior of the fabricated 3T-RRAM. The 3T-RRAM can be regarded as a nonvolatile transmission gate for constructing nonvolatile logic gates. Additionally, a full adder with input storage functionality has been designed using only eight 3T-RRAMs (four nonvolatile logic gates), and a binarized neural network (BNN) based on 3T-RRAM logic gate arrays has been proposed. This demonstrates the great potential of nonvolatile logic gates in computing-in-memory applications.</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonvolatile logic gate and full adder based on tri-terminal oxide resistive switching devices\",\"authors\":\"Jifang Cao , Jiabao Ye , Tao Wang , Yong Ding , Ran Cheng , Dong Liu , Bing Chen\",\"doi\":\"10.1016/j.mee.2024.112280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Today's on-chip computing power is constrained by the “memory wall” and “power wall” caused by the Von Neumann bottleneck. As a potential solution, this work has developed nonvolatile logic gates based on field-effect tri-terminal oxide resistive switching memory devices (3T-RRAM). A compact circuit model using a polynomial control source (PCS) is proposed to describe the behavior of the fabricated 3T-RRAM. The 3T-RRAM can be regarded as a nonvolatile transmission gate for constructing nonvolatile logic gates. Additionally, a full adder with input storage functionality has been designed using only eight 3T-RRAMs (four nonvolatile logic gates), and a binarized neural network (BNN) based on 3T-RRAM logic gate arrays has been proposed. This demonstrates the great potential of nonvolatile logic gates in computing-in-memory applications.</div></div>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167931724001497\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724001497","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Nonvolatile logic gate and full adder based on tri-terminal oxide resistive switching devices
Today's on-chip computing power is constrained by the “memory wall” and “power wall” caused by the Von Neumann bottleneck. As a potential solution, this work has developed nonvolatile logic gates based on field-effect tri-terminal oxide resistive switching memory devices (3T-RRAM). A compact circuit model using a polynomial control source (PCS) is proposed to describe the behavior of the fabricated 3T-RRAM. The 3T-RRAM can be regarded as a nonvolatile transmission gate for constructing nonvolatile logic gates. Additionally, a full adder with input storage functionality has been designed using only eight 3T-RRAMs (four nonvolatile logic gates), and a binarized neural network (BNN) based on 3T-RRAM logic gate arrays has been proposed. This demonstrates the great potential of nonvolatile logic gates in computing-in-memory applications.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.