Asghar Niyazi , Benjamin Metcalfe , Hannah S. Leese , Mirella Di Lorenzo
{"title":"通过聚苯胺涂层提高非生物葡萄糖燃料电池高多孔纳米结构金阳极的稳定性","authors":"Asghar Niyazi , Benjamin Metcalfe , Hannah S. Leese , Mirella Di Lorenzo","doi":"10.1016/j.electacta.2024.145281","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, advances in micro- and nano-electronics have enabled implantable and wearable ultra-low power bioelectronics to become a viable therapeutic option for the effective management of non-communicable diseases. Glucose fuel cells (GFCs) have significant potential as power sources for these devices, facilitating miniaturisation and, consequently, widening the application opportunities. For GFC technology to be deployable, the stability of the electrodes in physiological conditions is a major requirement. Accordingly, in this study, the use of a conductive polymeric coating was investigated to enhance the stability of nanostructured highly porous gold (hPG) films deposited onto gold electrodes on a printed circuit board to be used as the anode of an abiotic glucose fuel cell. Polyaniline (PANI) was electro-polymerised onto hPG, with the optimal polymerisation conditions identified as: 0.1 M monomer (aniline), 0.3 M dopant (HClO<sub>4</sub>), and a three-minute deposition time. Subsequently, the optimised PANI/hPG/Au nanocomposite electrode was tested in a GFC. Although halving the electrochemical activity, in terms of power output, the PANI coating significantly stabilises the hPG electrode, with an overall activity loss, after 7 days of operation, of only 6 %, compared to a 97 % activity loss observed in the absence of PANI. The stabilisation effect of PANI is also maintained in the presence of Cl<sup>−1</sup> ions (concentration 10 mM), present in physiological fluids and known to negatively impact on the electroactivity of hPG towards glucose. Overall, this study demonstrates an effective route for electrode stabilisation in abiotic GFCs, paving the way for their practical application in bioelectronics.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"508 ","pages":"Article 145281"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced stability of highly porous nanostructured gold anodes via polyaniline coating for abiotic glucose fuel cell\",\"authors\":\"Asghar Niyazi , Benjamin Metcalfe , Hannah S. Leese , Mirella Di Lorenzo\",\"doi\":\"10.1016/j.electacta.2024.145281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, advances in micro- and nano-electronics have enabled implantable and wearable ultra-low power bioelectronics to become a viable therapeutic option for the effective management of non-communicable diseases. Glucose fuel cells (GFCs) have significant potential as power sources for these devices, facilitating miniaturisation and, consequently, widening the application opportunities. For GFC technology to be deployable, the stability of the electrodes in physiological conditions is a major requirement. Accordingly, in this study, the use of a conductive polymeric coating was investigated to enhance the stability of nanostructured highly porous gold (hPG) films deposited onto gold electrodes on a printed circuit board to be used as the anode of an abiotic glucose fuel cell. Polyaniline (PANI) was electro-polymerised onto hPG, with the optimal polymerisation conditions identified as: 0.1 M monomer (aniline), 0.3 M dopant (HClO<sub>4</sub>), and a three-minute deposition time. Subsequently, the optimised PANI/hPG/Au nanocomposite electrode was tested in a GFC. Although halving the electrochemical activity, in terms of power output, the PANI coating significantly stabilises the hPG electrode, with an overall activity loss, after 7 days of operation, of only 6 %, compared to a 97 % activity loss observed in the absence of PANI. The stabilisation effect of PANI is also maintained in the presence of Cl<sup>−1</sup> ions (concentration 10 mM), present in physiological fluids and known to negatively impact on the electroactivity of hPG towards glucose. Overall, this study demonstrates an effective route for electrode stabilisation in abiotic GFCs, paving the way for their practical application in bioelectronics.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"508 \",\"pages\":\"Article 145281\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468624015172\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624015172","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
近年来,微电子学和纳米电子学的进步使植入式和可穿戴式超低功耗生物电子学成为有效治疗非传染性疾病的可行疗法。葡萄糖燃料电池(GFC)作为这些设备的动力源具有巨大的潜力,有利于实现微型化,从而扩大应用机会。要部署葡萄糖燃料电池技术,电极在生理条件下的稳定性是一个主要要求。因此,本研究调查了导电聚合物涂层的使用情况,以提高沉积在印刷电路板金电极上的纳米结构高多孔金(hPG)薄膜的稳定性,从而用作非生物葡萄糖燃料电池的阳极。聚苯胺(PANI)被电聚合到 hPG 上,最佳聚合条件为最佳聚合条件为:0.1 M 单体(苯胺)、0.3 M 掺杂剂(HClO4)和三分钟沉积时间。随后,经过优化的 PANI/hPG/Au 纳米复合电极在 GFC 中进行了测试。虽然就输出功率而言,PANI 涂层使电化学活性减半,但它极大地稳定了 hPG 电极,在运行 7 天后,整体活性损失仅为 6%,而在没有 PANI 的情况下,活性损失高达 97%。PANI 的稳定效果在 Cl-1 离子(浓度为 10 mM)存在时也能保持,Cl-1 离子存在于生理液体中,已知会对 hPG 对葡萄糖的电活性产生负面影响。总之,这项研究证明了非生物 GFC 中电极稳定的有效途径,为其在生物电子学中的实际应用铺平了道路。
Enhanced stability of highly porous nanostructured gold anodes via polyaniline coating for abiotic glucose fuel cell
In recent years, advances in micro- and nano-electronics have enabled implantable and wearable ultra-low power bioelectronics to become a viable therapeutic option for the effective management of non-communicable diseases. Glucose fuel cells (GFCs) have significant potential as power sources for these devices, facilitating miniaturisation and, consequently, widening the application opportunities. For GFC technology to be deployable, the stability of the electrodes in physiological conditions is a major requirement. Accordingly, in this study, the use of a conductive polymeric coating was investigated to enhance the stability of nanostructured highly porous gold (hPG) films deposited onto gold electrodes on a printed circuit board to be used as the anode of an abiotic glucose fuel cell. Polyaniline (PANI) was electro-polymerised onto hPG, with the optimal polymerisation conditions identified as: 0.1 M monomer (aniline), 0.3 M dopant (HClO4), and a three-minute deposition time. Subsequently, the optimised PANI/hPG/Au nanocomposite electrode was tested in a GFC. Although halving the electrochemical activity, in terms of power output, the PANI coating significantly stabilises the hPG electrode, with an overall activity loss, after 7 days of operation, of only 6 %, compared to a 97 % activity loss observed in the absence of PANI. The stabilisation effect of PANI is also maintained in the presence of Cl−1 ions (concentration 10 mM), present in physiological fluids and known to negatively impact on the electroactivity of hPG towards glucose. Overall, this study demonstrates an effective route for electrode stabilisation in abiotic GFCs, paving the way for their practical application in bioelectronics.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.