Pengfei Hu, Liqun Qian, Zimeng Li, Yanxue Yu, Dong Wang
{"title":"考虑个体自私性的沼气-风能-太阳能-氢能多微网系统分布式动态经济调度","authors":"Pengfei Hu, Liqun Qian, Zimeng Li, Yanxue Yu, Dong Wang","doi":"10.1016/j.ecmx.2024.100761","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a biogas-wind-solar-hydrogen multi-microgrid system to address the issues of poor economy and reliability, as well as the waste of wind and solar energy, in single energy-based isolated microgrid systems. The study considers the coupling constraints of multiple time scales and establishes a dynamic economic dispatch model. Furthermore, a consensus-based distributed dynamic economic dispatch strategy is proposed. To tackle the challenge of unified economic dispatch caused by the interaction among multiple microgrids in the joint operation of the biogas-wind-solar-hydrogen multi-microgrid system, a microgrid selfishness impact model and elimination strategy are developed. Simulation results demonstrate the effectiveness and superiority of the proposed distributed dynamic economic dispatch strategy considering individual selfishness in the biogas-wind-solar-hydrogen multi-microgrid system.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"24 ","pages":"Article 100761"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed dynamic economic dispatch of biogas-wind-solar-hydrogen multi-microgrid system considering individual selfishness\",\"authors\":\"Pengfei Hu, Liqun Qian, Zimeng Li, Yanxue Yu, Dong Wang\",\"doi\":\"10.1016/j.ecmx.2024.100761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a biogas-wind-solar-hydrogen multi-microgrid system to address the issues of poor economy and reliability, as well as the waste of wind and solar energy, in single energy-based isolated microgrid systems. The study considers the coupling constraints of multiple time scales and establishes a dynamic economic dispatch model. Furthermore, a consensus-based distributed dynamic economic dispatch strategy is proposed. To tackle the challenge of unified economic dispatch caused by the interaction among multiple microgrids in the joint operation of the biogas-wind-solar-hydrogen multi-microgrid system, a microgrid selfishness impact model and elimination strategy are developed. Simulation results demonstrate the effectiveness and superiority of the proposed distributed dynamic economic dispatch strategy considering individual selfishness in the biogas-wind-solar-hydrogen multi-microgrid system.</div></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":\"24 \",\"pages\":\"Article 100761\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524002393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524002393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Distributed dynamic economic dispatch of biogas-wind-solar-hydrogen multi-microgrid system considering individual selfishness
This paper proposes a biogas-wind-solar-hydrogen multi-microgrid system to address the issues of poor economy and reliability, as well as the waste of wind and solar energy, in single energy-based isolated microgrid systems. The study considers the coupling constraints of multiple time scales and establishes a dynamic economic dispatch model. Furthermore, a consensus-based distributed dynamic economic dispatch strategy is proposed. To tackle the challenge of unified economic dispatch caused by the interaction among multiple microgrids in the joint operation of the biogas-wind-solar-hydrogen multi-microgrid system, a microgrid selfishness impact model and elimination strategy are developed. Simulation results demonstrate the effectiveness and superiority of the proposed distributed dynamic economic dispatch strategy considering individual selfishness in the biogas-wind-solar-hydrogen multi-microgrid system.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.