通过原子级精确局部环境调制,在铜基团簇上实现二氧化碳到甲烷的电催化转化

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2024-09-24 DOI:10.1007/s40843-024-3088-5
Li Shi  (, ), Hanbo Wu  (, ), Wendi Xu  (, ), Wei Fu  (, ), Xiaobing Wang  (, ), Zhengyu Gu  (, ), Xiuyun Zhang  (, ), Jianyu Chen  (, ), Yanwen Ma  (, ), Jin Zhao  (, )
{"title":"通过原子级精确局部环境调制,在铜基团簇上实现二氧化碳到甲烷的电催化转化","authors":"Li Shi \n (,&nbsp;),&nbsp;Hanbo Wu \n (,&nbsp;),&nbsp;Wendi Xu \n (,&nbsp;),&nbsp;Wei Fu \n (,&nbsp;),&nbsp;Xiaobing Wang \n (,&nbsp;),&nbsp;Zhengyu Gu \n (,&nbsp;),&nbsp;Xiuyun Zhang \n (,&nbsp;),&nbsp;Jianyu Chen \n (,&nbsp;),&nbsp;Yanwen Ma \n (,&nbsp;),&nbsp;Jin Zhao \n (,&nbsp;)","doi":"10.1007/s40843-024-3088-5","DOIUrl":null,"url":null,"abstract":"<div><p>The development of low-cost, high-performance catalysts at the atomic scale has become a challenging issue for the large-scale applications of renewable clean energy technologies. Herein, on the basis of density functional theory calculation, we systematically investigate the effect of the local environment on the activity and selectivity of electrochemical carbon dioxide reduction reaction over single/multi-atom alloy clusters formed by the transition metal (Fe, Co, and Ni)-doped Cu13/55 clusters. Our findings reveal that the catalytic performance of multi-atom alloy clusters far exceeds that of Cu (211) surface. Notably, the Co666 configuration exhibits exceptional performance with a remarkably low free energy barrier of just 0.33 eV. Furthermore, our investigations demonstrate that catalytic performance is predominantly determined by the relative proportion of modifying metallic dopant species that generate a coordination number of 6. This ratio principally influences the adsorption strength of key intermediates (HCOO* and H<sub>2</sub>COO*). Bader charge analyses and free energy calculations elucidate a new mechanistic pathway, wherein the hydrogenation of CO<sub>2</sub> at C-sites catalyzes the reduction of CO<sub>2</sub> to CH<sub>4</sub>. This theoretical research provides valuable insights into the fundamental processes and energy landscapes involved in converting CO<sub>2</sub> to CH<sub>4</sub> on the studied catalytic structure, potentially paving the way for more efficient and sustainable carbon dioxide utilization strategies.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3602 - 3608"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic conversion of CO2 to CH4 over Cu-based cluster via atomically precise local environment modulation\",\"authors\":\"Li Shi \\n (,&nbsp;),&nbsp;Hanbo Wu \\n (,&nbsp;),&nbsp;Wendi Xu \\n (,&nbsp;),&nbsp;Wei Fu \\n (,&nbsp;),&nbsp;Xiaobing Wang \\n (,&nbsp;),&nbsp;Zhengyu Gu \\n (,&nbsp;),&nbsp;Xiuyun Zhang \\n (,&nbsp;),&nbsp;Jianyu Chen \\n (,&nbsp;),&nbsp;Yanwen Ma \\n (,&nbsp;),&nbsp;Jin Zhao \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3088-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of low-cost, high-performance catalysts at the atomic scale has become a challenging issue for the large-scale applications of renewable clean energy technologies. Herein, on the basis of density functional theory calculation, we systematically investigate the effect of the local environment on the activity and selectivity of electrochemical carbon dioxide reduction reaction over single/multi-atom alloy clusters formed by the transition metal (Fe, Co, and Ni)-doped Cu13/55 clusters. Our findings reveal that the catalytic performance of multi-atom alloy clusters far exceeds that of Cu (211) surface. Notably, the Co666 configuration exhibits exceptional performance with a remarkably low free energy barrier of just 0.33 eV. Furthermore, our investigations demonstrate that catalytic performance is predominantly determined by the relative proportion of modifying metallic dopant species that generate a coordination number of 6. This ratio principally influences the adsorption strength of key intermediates (HCOO* and H<sub>2</sub>COO*). Bader charge analyses and free energy calculations elucidate a new mechanistic pathway, wherein the hydrogenation of CO<sub>2</sub> at C-sites catalyzes the reduction of CO<sub>2</sub> to CH<sub>4</sub>. This theoretical research provides valuable insights into the fundamental processes and energy landscapes involved in converting CO<sub>2</sub> to CH<sub>4</sub> on the studied catalytic structure, potentially paving the way for more efficient and sustainable carbon dioxide utilization strategies.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 11\",\"pages\":\"3602 - 3608\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3088-5\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3088-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发低成本、高性能的原子尺度催化剂已成为可再生清洁能源技术大规模应用的挑战性课题。在此,我们在密度泛函理论计算的基础上,系统研究了局部环境对过渡金属(Fe、Co 和 Ni)掺杂 Cu13/55 簇形成的单/多原子合金簇电化学二氧化碳还原反应活性和选择性的影响。我们的研究结果表明,多原子合金团簇的催化性能远远超过了 Cu (211) 表面。值得注意的是,Co666 构型表现出卓越的性能,其自由能垒非常低,仅为 0.33 eV。此外,我们的研究还表明,催化性能主要取决于产生 6 配位数的改性金属掺杂物的相对比例,这一比例主要影响关键中间产物(HCOO* 和 H2COO*)的吸附强度。巴德尔电荷分析和自由能计算阐明了一种新的机理途径,即 C 位上的 CO2 加氢催化 CO2 还原成 CH4。这项理论研究为了解在所研究的催化结构上将 CO2 转化为 CH4 所涉及的基本过程和能量景观提供了宝贵的见解,有可能为制定更高效、更可持续的二氧化碳利用战略铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrocatalytic conversion of CO2 to CH4 over Cu-based cluster via atomically precise local environment modulation

The development of low-cost, high-performance catalysts at the atomic scale has become a challenging issue for the large-scale applications of renewable clean energy technologies. Herein, on the basis of density functional theory calculation, we systematically investigate the effect of the local environment on the activity and selectivity of electrochemical carbon dioxide reduction reaction over single/multi-atom alloy clusters formed by the transition metal (Fe, Co, and Ni)-doped Cu13/55 clusters. Our findings reveal that the catalytic performance of multi-atom alloy clusters far exceeds that of Cu (211) surface. Notably, the Co666 configuration exhibits exceptional performance with a remarkably low free energy barrier of just 0.33 eV. Furthermore, our investigations demonstrate that catalytic performance is predominantly determined by the relative proportion of modifying metallic dopant species that generate a coordination number of 6. This ratio principally influences the adsorption strength of key intermediates (HCOO* and H2COO*). Bader charge analyses and free energy calculations elucidate a new mechanistic pathway, wherein the hydrogenation of CO2 at C-sites catalyzes the reduction of CO2 to CH4. This theoretical research provides valuable insights into the fundamental processes and energy landscapes involved in converting CO2 to CH4 on the studied catalytic structure, potentially paving the way for more efficient and sustainable carbon dioxide utilization strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Hollow MnO2-based multifunctional nanoplatform for enhanced tumor chemodynamic therapy Advancements in in-situ transmission electron microscopy for comprehensive analysis of heterogeneous catalysis: insights into the nanoscale dynamic processes Anion-induced opposite mechanochromic and thermochromic emission directions of protonated hydrazones Boosting hydrogen evolution via work-function-accelerated electronic reconfiguration of Mo-based heterojunction Unraveling the colloidal composition of perovskite precursor solutions and its impact on film formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1