影响 MAX 相的合成和特性的因素

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2024-09-19 DOI:10.1007/s40843-024-3073-7
Maaz Ullah Khan, Sumair Ahmed Soomro, Muhammad Irfan Jahanger, Yanchun Zhou  (, ), Longsheng Chu  (, ), Qingguo Feng  (, ), Chunfeng Hu  (, )
{"title":"影响 MAX 相的合成和特性的因素","authors":"Maaz Ullah Khan,&nbsp;Sumair Ahmed Soomro,&nbsp;Muhammad Irfan Jahanger,&nbsp;Yanchun Zhou \n (,&nbsp;),&nbsp;Longsheng Chu \n (,&nbsp;),&nbsp;Qingguo Feng \n (,&nbsp;),&nbsp;Chunfeng Hu \n (,&nbsp;)","doi":"10.1007/s40843-024-3073-7","DOIUrl":null,"url":null,"abstract":"<div><p>MAX phases are a member of ternary carbide and nitride, with a layered crystal structure and a mixed nature of chemical bonds (covalent-ionic-metallic) that promote MAX phases embracing both ceramic and metal characteristics. As a result, MAX phase ceramics emerge with remarkable properties unique from other traditional ceramics. In this review, we focus on alternate processing approaches for MAX phases that are cost-effective and energy-saving. The MAX phase purity, formation of other unwanted phases, microstructure, and properties are influenced by many parameters during processing. Therefore, we highlight the effect of numerous factors, which alternately diminish the efficiency and performance of materials. Here, the impact of several parameters, such as starting materials, stoichiometric composition, temperature, pressure, particle size, porosity, microstructure, mechanical alloying, mechanical activation, ion irradiation, and doping, are summarized to reveal their influence on the synthesis and properties of MAX phases. The potential applications of MAX phases are considered for their development on a commercial scale toward the industry.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3427 - 3455"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factors influencing synthesis and properties of MAX phases\",\"authors\":\"Maaz Ullah Khan,&nbsp;Sumair Ahmed Soomro,&nbsp;Muhammad Irfan Jahanger,&nbsp;Yanchun Zhou \\n (,&nbsp;),&nbsp;Longsheng Chu \\n (,&nbsp;),&nbsp;Qingguo Feng \\n (,&nbsp;),&nbsp;Chunfeng Hu \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3073-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>MAX phases are a member of ternary carbide and nitride, with a layered crystal structure and a mixed nature of chemical bonds (covalent-ionic-metallic) that promote MAX phases embracing both ceramic and metal characteristics. As a result, MAX phase ceramics emerge with remarkable properties unique from other traditional ceramics. In this review, we focus on alternate processing approaches for MAX phases that are cost-effective and energy-saving. The MAX phase purity, formation of other unwanted phases, microstructure, and properties are influenced by many parameters during processing. Therefore, we highlight the effect of numerous factors, which alternately diminish the efficiency and performance of materials. Here, the impact of several parameters, such as starting materials, stoichiometric composition, temperature, pressure, particle size, porosity, microstructure, mechanical alloying, mechanical activation, ion irradiation, and doping, are summarized to reveal their influence on the synthesis and properties of MAX phases. The potential applications of MAX phases are considered for their development on a commercial scale toward the industry.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 11\",\"pages\":\"3427 - 3455\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3073-7\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3073-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

MAX 相属于三元碳化物和氮化物,具有层状晶体结构和混合性质的化学键(共价键-离子键-金属键),使 MAX 相兼具陶瓷和金属的特性。因此,MAX 相陶瓷具有不同于其他传统陶瓷的显著特性。在这篇综述中,我们将重点介绍具有成本效益和节能的 MAX 相替代加工方法。MAX 相的纯度、其他不需要的相的形成、微观结构和性能在加工过程中受到许多参数的影响。因此,我们强调众多因素的影响,这些因素会交替降低材料的效率和性能。在此,我们总结了起始材料、化学成分、温度、压力、粒度、孔隙率、微观结构、机械合金化、机械活化、离子辐照和掺杂等参数对 MAX 相合成和性能的影响。此外,还考虑了 MAX 相的潜在应用,以促进其在工业领域的商业化发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Factors influencing synthesis and properties of MAX phases

MAX phases are a member of ternary carbide and nitride, with a layered crystal structure and a mixed nature of chemical bonds (covalent-ionic-metallic) that promote MAX phases embracing both ceramic and metal characteristics. As a result, MAX phase ceramics emerge with remarkable properties unique from other traditional ceramics. In this review, we focus on alternate processing approaches for MAX phases that are cost-effective and energy-saving. The MAX phase purity, formation of other unwanted phases, microstructure, and properties are influenced by many parameters during processing. Therefore, we highlight the effect of numerous factors, which alternately diminish the efficiency and performance of materials. Here, the impact of several parameters, such as starting materials, stoichiometric composition, temperature, pressure, particle size, porosity, microstructure, mechanical alloying, mechanical activation, ion irradiation, and doping, are summarized to reveal their influence on the synthesis and properties of MAX phases. The potential applications of MAX phases are considered for their development on a commercial scale toward the industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Hollow MnO2-based multifunctional nanoplatform for enhanced tumor chemodynamic therapy Advancements in in-situ transmission electron microscopy for comprehensive analysis of heterogeneous catalysis: insights into the nanoscale dynamic processes Anion-induced opposite mechanochromic and thermochromic emission directions of protonated hydrazones Boosting hydrogen evolution via work-function-accelerated electronic reconfiguration of Mo-based heterojunction Unraveling the colloidal composition of perovskite precursor solutions and its impact on film formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1