{"title":"电凝法处理 Haldia 工业区收集的废水:性能评估与工艺优化比较","authors":"Uma Sankar Behera , Sourav Poddar , Hun-Soo Byun","doi":"10.1016/j.watres.2024.122716","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the treatment of oil-contaminated wastewater with high levels of inorganic substances, suspended solids and turbidity, collected from the Haldia industrial region of India in February 2023. The wastewater, originating from industries such as chemical, petrochemical, textile, and battery manufacturing, presents a complex pollutant load that challenges traditional treatment methods. Electrocoagulation was employed as the treatment technique, with process optimization conducted using Box-Behnken design (BBD) and central composite design (CCD) for key parameters: pH, initial oil concentration, current density, and electrolysis time. The study comprehensively examined the effects of these parameters on turbidity removal. The optimal conditions were determined to be a pH of 7.5, an initial oil concentration of 275 mg/L, a current density of 17.5 mA/cm², and an electrolysis time of 20 min. Under these conditions, CCD outperformed BBD, achieving a desirability score of 93 % compared to 80 % for BBD. The process successfully reduced turbidity from 450 NTU to 56 NTU and total suspended solids (TSS) from 300 mg/L to 102 mg/L. The operation cost of the process was found to range from ₹0.904/m³ to ₹2.71/m³ as the electrolysis time increased from 0.17 to 0.5 h. The study presents a viable solution for industrial wastewater treatment in this region, aligning with the United Nations Sustainable Development Goal (UN SDG) 2030. Additionally, combining electrocoagulation with membrane filtration may enhance comprehensive pollutant removal.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122716"},"PeriodicalIF":11.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocoagulation treatment of wastewater collected from Haldia industrial region: Performance evaluation and comparison of process optimization\",\"authors\":\"Uma Sankar Behera , Sourav Poddar , Hun-Soo Byun\",\"doi\":\"10.1016/j.watres.2024.122716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the treatment of oil-contaminated wastewater with high levels of inorganic substances, suspended solids and turbidity, collected from the Haldia industrial region of India in February 2023. The wastewater, originating from industries such as chemical, petrochemical, textile, and battery manufacturing, presents a complex pollutant load that challenges traditional treatment methods. Electrocoagulation was employed as the treatment technique, with process optimization conducted using Box-Behnken design (BBD) and central composite design (CCD) for key parameters: pH, initial oil concentration, current density, and electrolysis time. The study comprehensively examined the effects of these parameters on turbidity removal. The optimal conditions were determined to be a pH of 7.5, an initial oil concentration of 275 mg/L, a current density of 17.5 mA/cm², and an electrolysis time of 20 min. Under these conditions, CCD outperformed BBD, achieving a desirability score of 93 % compared to 80 % for BBD. The process successfully reduced turbidity from 450 NTU to 56 NTU and total suspended solids (TSS) from 300 mg/L to 102 mg/L. The operation cost of the process was found to range from ₹0.904/m³ to ₹2.71/m³ as the electrolysis time increased from 0.17 to 0.5 h. The study presents a viable solution for industrial wastewater treatment in this region, aligning with the United Nations Sustainable Development Goal (UN SDG) 2030. Additionally, combining electrocoagulation with membrane filtration may enhance comprehensive pollutant removal.</div></div>\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"268 \",\"pages\":\"Article 122716\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043135424016154\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424016154","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Electrocoagulation treatment of wastewater collected from Haldia industrial region: Performance evaluation and comparison of process optimization
This study investigates the treatment of oil-contaminated wastewater with high levels of inorganic substances, suspended solids and turbidity, collected from the Haldia industrial region of India in February 2023. The wastewater, originating from industries such as chemical, petrochemical, textile, and battery manufacturing, presents a complex pollutant load that challenges traditional treatment methods. Electrocoagulation was employed as the treatment technique, with process optimization conducted using Box-Behnken design (BBD) and central composite design (CCD) for key parameters: pH, initial oil concentration, current density, and electrolysis time. The study comprehensively examined the effects of these parameters on turbidity removal. The optimal conditions were determined to be a pH of 7.5, an initial oil concentration of 275 mg/L, a current density of 17.5 mA/cm², and an electrolysis time of 20 min. Under these conditions, CCD outperformed BBD, achieving a desirability score of 93 % compared to 80 % for BBD. The process successfully reduced turbidity from 450 NTU to 56 NTU and total suspended solids (TSS) from 300 mg/L to 102 mg/L. The operation cost of the process was found to range from ₹0.904/m³ to ₹2.71/m³ as the electrolysis time increased from 0.17 to 0.5 h. The study presents a viable solution for industrial wastewater treatment in this region, aligning with the United Nations Sustainable Development Goal (UN SDG) 2030. Additionally, combining electrocoagulation with membrane filtration may enhance comprehensive pollutant removal.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.