Meng-Ze Jia, Bin Tan, Yun-Rui Chen, Jia-Qi Pan, Shi-Kai Yu, Ling Xin, Jie Zhang
{"title":"在可见光照射下通过调节活性物种实现芳香族硫醚的可调谐和选择性转化","authors":"Meng-Ze Jia, Bin Tan, Yun-Rui Chen, Jia-Qi Pan, Shi-Kai Yu, Ling Xin, Jie Zhang","doi":"10.1002/ejoc.202401092","DOIUrl":null,"url":null,"abstract":"Through effective regulation of active species in photocatalytic process, the oxidation or C(sp3)-S bond cleavage upgrading of widespread aryl alkyl sulfides under mild conditions was successfully achieved by using a pyridinium photocatalyst. Benefiting from the excellent redox ability of the photocatalyst, the electron transfer between the pyridinium molecule and the substrate, molecular oxygen, or counter-anion effectively promotes the conversion and upgrading of the substrate thioether. Among them, the efficient generation of reactive oxygen species (ROS) enables the highly selective oxidation of sulfides to sulfoxides under visible light and air atmosphere. More importantly, the chlorine radical (Cl•) generated by electron transfer, reported for the first time, contributes to the cleavage of C(sp3)-S bonds, achieving the transformation of aryl alkyl sulfides to disulfides. By harnessing the superior photocatalytic ability of pyridinium molecules, this work not only achieves the highly selective conversion of thioether by taming the active species in the photocatalytic process, but also sheds light on the untapped potential of chlorine radicals in the field of C(sp3)-S bond activation and cleavage.","PeriodicalId":167,"journal":{"name":"European Journal of Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable and selective transformation of aromatic thioether enabled by regulating active species under visible light irradiation\",\"authors\":\"Meng-Ze Jia, Bin Tan, Yun-Rui Chen, Jia-Qi Pan, Shi-Kai Yu, Ling Xin, Jie Zhang\",\"doi\":\"10.1002/ejoc.202401092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through effective regulation of active species in photocatalytic process, the oxidation or C(sp3)-S bond cleavage upgrading of widespread aryl alkyl sulfides under mild conditions was successfully achieved by using a pyridinium photocatalyst. Benefiting from the excellent redox ability of the photocatalyst, the electron transfer between the pyridinium molecule and the substrate, molecular oxygen, or counter-anion effectively promotes the conversion and upgrading of the substrate thioether. Among them, the efficient generation of reactive oxygen species (ROS) enables the highly selective oxidation of sulfides to sulfoxides under visible light and air atmosphere. More importantly, the chlorine radical (Cl•) generated by electron transfer, reported for the first time, contributes to the cleavage of C(sp3)-S bonds, achieving the transformation of aryl alkyl sulfides to disulfides. By harnessing the superior photocatalytic ability of pyridinium molecules, this work not only achieves the highly selective conversion of thioether by taming the active species in the photocatalytic process, but also sheds light on the untapped potential of chlorine radicals in the field of C(sp3)-S bond activation and cleavage.\",\"PeriodicalId\":167,\"journal\":{\"name\":\"European Journal of Organic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/ejoc.202401092\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/ejoc.202401092","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Tunable and selective transformation of aromatic thioether enabled by regulating active species under visible light irradiation
Through effective regulation of active species in photocatalytic process, the oxidation or C(sp3)-S bond cleavage upgrading of widespread aryl alkyl sulfides under mild conditions was successfully achieved by using a pyridinium photocatalyst. Benefiting from the excellent redox ability of the photocatalyst, the electron transfer between the pyridinium molecule and the substrate, molecular oxygen, or counter-anion effectively promotes the conversion and upgrading of the substrate thioether. Among them, the efficient generation of reactive oxygen species (ROS) enables the highly selective oxidation of sulfides to sulfoxides under visible light and air atmosphere. More importantly, the chlorine radical (Cl•) generated by electron transfer, reported for the first time, contributes to the cleavage of C(sp3)-S bonds, achieving the transformation of aryl alkyl sulfides to disulfides. By harnessing the superior photocatalytic ability of pyridinium molecules, this work not only achieves the highly selective conversion of thioether by taming the active species in the photocatalytic process, but also sheds light on the untapped potential of chlorine radicals in the field of C(sp3)-S bond activation and cleavage.
期刊介绍:
The European Journal of Organic Chemistry (2019 ISI Impact Factor 2.889) publishes Full Papers, Communications, and Minireviews from the entire spectrum of synthetic organic, bioorganic and physical-organic chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form two leading journals, the European Journal of Organic Chemistry and the European Journal of Inorganic Chemistry:
Liebigs Annalen
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry.