Zixi Li , Xinyue Su , Yihong Lin, Yu Zhang, Anlan Zhang, Xin Wu, Xi Jiyu, Qin Li, Zewen Wei
{"title":"利用连续微流控电穿孔芯片扩大 CRISPR/Cas9 基因编辑的细胞数量。","authors":"Zixi Li , Xinyue Su , Yihong Lin, Yu Zhang, Anlan Zhang, Xin Wu, Xi Jiyu, Qin Li, Zewen Wei","doi":"10.1016/j.bioelechem.2024.108840","DOIUrl":null,"url":null,"abstract":"<div><div>CRISPR/Cas9-mediated gene editing offers promising and safe therapeutic options for a wide range of diseases. The technical difficulty of efficiently acquiring large quantities of gene-edited therapeutic cells in a short time period is now preventing the widespread clinical application of CRISPR/Cas9-mediated gene editing. Herein, a Large Volume Continuous Electroporation Chip (LaViE-Chip) has been developed to address the challenge of acquiring sufficient quantities of genetically edited cells for CRISPR/Cas9 gene editing. By connecting multiple relatively narrow microfluidic channels in parallel, a satisfactory balance between cell flow volume and electric field uniformity was achieved with two simple off-chip electrodes, which also isolated harmful effects around electrodes from target cells. Meanwhile, by carefully designing the curvature of the microfluidic channel, hydrodynamic controlled rotation of target cells has been realized to improve the transfection efficiency and cell viability. With these improvements, the LaViE-Chip realized 71.06 % electrotransfection efficiency, 84.3 % cell viability, and 10<sup>7</sup> cell/min cell processing speed. Moreover, the first successful incessant CRISPR gene editing by electroporation has been demonstrated, laying the technical foundation of therapeutic CRISPR gene editing.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"161 ","pages":"Article 108840"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expanding the cell quantity of CRISPR/Cas9 gene editing by continuous microfluidic electroporation chip\",\"authors\":\"Zixi Li , Xinyue Su , Yihong Lin, Yu Zhang, Anlan Zhang, Xin Wu, Xi Jiyu, Qin Li, Zewen Wei\",\"doi\":\"10.1016/j.bioelechem.2024.108840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>CRISPR/Cas9-mediated gene editing offers promising and safe therapeutic options for a wide range of diseases. The technical difficulty of efficiently acquiring large quantities of gene-edited therapeutic cells in a short time period is now preventing the widespread clinical application of CRISPR/Cas9-mediated gene editing. Herein, a Large Volume Continuous Electroporation Chip (LaViE-Chip) has been developed to address the challenge of acquiring sufficient quantities of genetically edited cells for CRISPR/Cas9 gene editing. By connecting multiple relatively narrow microfluidic channels in parallel, a satisfactory balance between cell flow volume and electric field uniformity was achieved with two simple off-chip electrodes, which also isolated harmful effects around electrodes from target cells. Meanwhile, by carefully designing the curvature of the microfluidic channel, hydrodynamic controlled rotation of target cells has been realized to improve the transfection efficiency and cell viability. With these improvements, the LaViE-Chip realized 71.06 % electrotransfection efficiency, 84.3 % cell viability, and 10<sup>7</sup> cell/min cell processing speed. Moreover, the first successful incessant CRISPR gene editing by electroporation has been demonstrated, laying the technical foundation of therapeutic CRISPR gene editing.</div></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"161 \",\"pages\":\"Article 108840\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567539424002020\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424002020","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Expanding the cell quantity of CRISPR/Cas9 gene editing by continuous microfluidic electroporation chip
CRISPR/Cas9-mediated gene editing offers promising and safe therapeutic options for a wide range of diseases. The technical difficulty of efficiently acquiring large quantities of gene-edited therapeutic cells in a short time period is now preventing the widespread clinical application of CRISPR/Cas9-mediated gene editing. Herein, a Large Volume Continuous Electroporation Chip (LaViE-Chip) has been developed to address the challenge of acquiring sufficient quantities of genetically edited cells for CRISPR/Cas9 gene editing. By connecting multiple relatively narrow microfluidic channels in parallel, a satisfactory balance between cell flow volume and electric field uniformity was achieved with two simple off-chip electrodes, which also isolated harmful effects around electrodes from target cells. Meanwhile, by carefully designing the curvature of the microfluidic channel, hydrodynamic controlled rotation of target cells has been realized to improve the transfection efficiency and cell viability. With these improvements, the LaViE-Chip realized 71.06 % electrotransfection efficiency, 84.3 % cell viability, and 107 cell/min cell processing speed. Moreover, the first successful incessant CRISPR gene editing by electroporation has been demonstrated, laying the technical foundation of therapeutic CRISPR gene editing.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.