Aaifa Chaudhary, Muhammad Usman, Wei Cheng, Stefan Haderlein, Jean-François Boily, Khalil Hanna
{"title":"重金属离子对水生系统中鹅卵石吸附全氟辛烷磺酸的控制。","authors":"Aaifa Chaudhary, Muhammad Usman, Wei Cheng, Stefan Haderlein, Jean-François Boily, Khalil Hanna","doi":"10.1021/acs.est.4c10068","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants that often co-occur with heavy metals. Despite their prevalence, the mobility of PFAS in complex, multicomponent systems, particularly at the molecular scale, remains poorly understood. The vast diversity of PFAS and their low concentrations alongside anthropogenic and natural substances underscore the need for integrating mechanistic insights into the sorption models. This study explores the influence of metal cations (Cu(II), Cd(II), and Fe(II)) on the adsorption of four common PFAS (PFOA, PFOS, PFDA, and GenX) onto goethite (α-FeOOH), a common iron (oxyhydr)oxide in both aquatic and terrestrial environments. PFAS adsorption was highly dependent on the PFAS type, pH, and metal ion concentration, with a surface complexation model effectively predicting these interactions. Cu(II) and Cd(II) enhanced PFOS and PFDA adsorption via ternary complexation while slightly reducing PFOA and GenX adsorption. Under anoxic conditions, Fe(II) significantly increased the adsorption of all PFAS, showing reactivity greater than those of Cu(II) and Cd(II). Additionally, natural organic matter increased PFAS mobility, although metal cations in groundwater may counteract this by enhancing PFAS retention. These findings highlight the key role of metal cations in PFAS transport and offer critical insights for predicting PFAS behavior at oxic-anoxic environmental interfaces.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":"20235-20244"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heavy-Metal Ions Control on PFAS Adsorption on Goethite in Aquatic Systems.\",\"authors\":\"Aaifa Chaudhary, Muhammad Usman, Wei Cheng, Stefan Haderlein, Jean-François Boily, Khalil Hanna\",\"doi\":\"10.1021/acs.est.4c10068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants that often co-occur with heavy metals. Despite their prevalence, the mobility of PFAS in complex, multicomponent systems, particularly at the molecular scale, remains poorly understood. The vast diversity of PFAS and their low concentrations alongside anthropogenic and natural substances underscore the need for integrating mechanistic insights into the sorption models. This study explores the influence of metal cations (Cu(II), Cd(II), and Fe(II)) on the adsorption of four common PFAS (PFOA, PFOS, PFDA, and GenX) onto goethite (α-FeOOH), a common iron (oxyhydr)oxide in both aquatic and terrestrial environments. PFAS adsorption was highly dependent on the PFAS type, pH, and metal ion concentration, with a surface complexation model effectively predicting these interactions. Cu(II) and Cd(II) enhanced PFOS and PFDA adsorption via ternary complexation while slightly reducing PFOA and GenX adsorption. Under anoxic conditions, Fe(II) significantly increased the adsorption of all PFAS, showing reactivity greater than those of Cu(II) and Cd(II). Additionally, natural organic matter increased PFAS mobility, although metal cations in groundwater may counteract this by enhancing PFAS retention. These findings highlight the key role of metal cations in PFAS transport and offer critical insights for predicting PFAS behavior at oxic-anoxic environmental interfaces.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\" \",\"pages\":\"20235-20244\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c10068\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c10068","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Heavy-Metal Ions Control on PFAS Adsorption on Goethite in Aquatic Systems.
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants that often co-occur with heavy metals. Despite their prevalence, the mobility of PFAS in complex, multicomponent systems, particularly at the molecular scale, remains poorly understood. The vast diversity of PFAS and their low concentrations alongside anthropogenic and natural substances underscore the need for integrating mechanistic insights into the sorption models. This study explores the influence of metal cations (Cu(II), Cd(II), and Fe(II)) on the adsorption of four common PFAS (PFOA, PFOS, PFDA, and GenX) onto goethite (α-FeOOH), a common iron (oxyhydr)oxide in both aquatic and terrestrial environments. PFAS adsorption was highly dependent on the PFAS type, pH, and metal ion concentration, with a surface complexation model effectively predicting these interactions. Cu(II) and Cd(II) enhanced PFOS and PFDA adsorption via ternary complexation while slightly reducing PFOA and GenX adsorption. Under anoxic conditions, Fe(II) significantly increased the adsorption of all PFAS, showing reactivity greater than those of Cu(II) and Cd(II). Additionally, natural organic matter increased PFAS mobility, although metal cations in groundwater may counteract this by enhancing PFAS retention. These findings highlight the key role of metal cations in PFAS transport and offer critical insights for predicting PFAS behavior at oxic-anoxic environmental interfaces.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.